Cho n là số tự nhiên: Chứng minh rằng:[\(\frac{n}{2}\)] + [ \(\frac{n+1}{2}\)] =n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A > 1 (dĩ nhiên)
A\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{n}=1+\frac{1}{1}-\frac{1}{n}=2-\frac{1}{n}<2\)Nên 1 < A < 2 nên A không phải là số tự nhiên
Đặt P = ...
* Chứng minh P > 1/2 :
\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)
Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là:
\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)
\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)
Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)
\(\Rightarrow\)\(P>\frac{1}{2}\)
* Chứng minh P < 3/4 :
Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)
\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)
\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)
...
\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)
\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 )
\(\Rightarrow\)\(P< \frac{3}{4}\)
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
\(\frac{n}{2}+\frac{n+1}{2}=\frac{2n+1}{2}\) , mà \(n=\frac{2n}{2}\) => sai đề