K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

\(\hept{\begin{cases}2x^2-xy+3y^2=13\\x^2+4xy-2y^2=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12x^2-6xy+18y^2=78\\13x^2+52xy-26y^2=-78\end{cases}}\)

Cộng vế với vế hai phương trình trong hệ ta có:

\(25x^2+46xy-8y^2=0\)

\(\Leftrightarrow\left(x+2y\right)\left(25x-4y\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2y\\x=\frac{4y}{25}\end{cases}}\)

TH1: \(x=-2y\)

Ta có \(4y^2-8y^2-2y^2=-6\Leftrightarrow y^2=1\Leftrightarrow\orbr{\begin{cases}y=1;x=-2\\y=-1;x=2\end{cases}}\)

TH2: \(x=\frac{4y}{25}\)

Ta có \(\frac{16y^2}{625}+\frac{16}{25}y^2-2y^2=-6\Leftrightarrow y^2=\frac{625}{139}\Leftrightarrow\orbr{\begin{cases}y=\frac{25}{\sqrt{139}};x=\frac{4}{\sqrt{139}}\\y=\frac{-25}{\sqrt{139}};x=\frac{-4}{\sqrt{139}}\end{cases}}\)

Vậy hệ có 4 nghiệm.

31 tháng 1 2018

nhan cheo 2 he pt thi bn se ra 

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 2 2017

Xét phương trình đầu ta có:

2x2 + 2y2 + 4xy + 3x + 3y - 2 = 0

<=> (2x2 + 2xy + 4x) + (2xy + 2y2 + 4y) + (- x - y - 2) = 0

<=> (x + y + 2)(2x + 2y - 1) = 0

Giờ chỉ cần thế ngược lại phương trình thứ 2 là giải ra nhé. 

4 tháng 2 2017

bài này khó quá mong bạn giải giùm mình,mình suy nghĩ hoài mà ko được.

25 tháng 11 2018

Gọi pt trên là pt (1), pt dưới là pt (2).

\(pt\left(1\right)\Leftrightarrow2x^2+\left(y-6\right)x-2y+4.\)

Ta có: \(\Delta=\left(y-6\right)^2-4\cdot2\left(4-2y\right)=y^2-12y+36-32+16y=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{6-y+y+2}{4}=2\\x=\frac{6-y-y-2}{4}=\frac{2-y}{2}\end{cases}}\)

Với từng trường hợp thay vào pt (2) sẽ ra, tự lm nhé

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

29 tháng 10 2019

\(\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\x^2+\frac{9}{x^2}+y^2+\frac{4}{y^2}=15\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\\left(x+\frac{3}{x}\right)^2+\left(y-\frac{2}{y}\right)^2=17\end{cases}}\)

Đặt \(\hept{\begin{cases}x+\frac{3}{x}=a\\y-\frac{2}{y}=b\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=17\end{cases}}\) \(\Rightarrow\left(a;b\right)=\left(1;4\right);\left(4;1\right)\)

\(\Rightarrow...\)

30 tháng 10 2019

thanks