K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

khó  quá à

12 tháng 3 2021

Dễ thấy H là trực tâm của tam giác ABC.

a) Bỏ qua

b) Gọi T là trung điểm của HC.

Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.

TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra  MT // ON.

Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).

Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).

Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).

c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.

 

 

25 tháng 6 2016

1a. Vì AB là đường trung trực của DH nên AD=AH.

vì AC là đường trung trực của HE nên AH=AE.

do đó AD=AE(=AH) => tam giác ADE cân tại A.

25 tháng 6 2016

bạn ơi đề bài bài 1 đúng ko thế

 

3 tháng 2 2022

a) -Xét △ABM có: \(EG\)//\(BM\) (gt)

=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).

=>\(BE.AG=AE.MG\).

b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)

=>\(BM\)//\(CN\).

- Xét △BMD và △CND có:

\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).

\(BD=CD\) (D là trung điểm AB).

\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).

=>△BMD = △CND (c-g-c).

=>\(MD=ND\) (2 cạnh tương ứng).

*\(GM+GN=GD-MD+GD+ND=2GD\)