Tìm x:(2x-6)^10=(2x-6)^8 (x thuộc Z)
ai nhanh mk k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2\left(x-1\right)+\left(-6\right)=10\)
\(-2\left(x-1\right)=10-\left(-6\right)\)
\(-2\left(x-1\right)=16\)
\(x-1=16:\left(-2\right)\)
\(x-1=-8\)
\(x=-8+1\)
\(x=-7\)
\(-2\left(x-1\right)+\left(-6\right)=10\)
\(-2.\left(x-1\right)=10-\left(-6\right)\)
\(-2\left(x-1\right)=16\)
\(x-1=16:\left(-2\right)\)
\(x-1=-8\)
\(x=\left(-8\right)+1\)
\(x=-7\)
a) \(\left(x-3\right)\left(6-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\6-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x< 6\end{cases}\Leftrightarrow}3< x< 6}\)
hoặc \(\hept{\begin{cases}x-3< 0\\6-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x>6\end{cases}}}\)(vô lí)
Vậy \(3< x< 6\)
a) | 2x - 6 | = 2x + 4 ( ĐK : 2x + 4 \(\ge\)0 <=> x \(\ge\)\(\frac{-4}{2}\) )
=> \(\orbr{\begin{cases}2x-6=2x+4\\2x-6=-2x-4\end{cases}}\)=>\(\orbr{\begin{cases}2x-2x=6+4\\2x+2x=-4+6\end{cases}}\)=> \(\orbr{\begin{cases}0x=10\\4x=2\end{cases}}\)=>\(\orbr{\begin{cases}x\in\varnothing\\x=2\end{cases}}\)
Đối chiếu vs điều kiện, ta có x e { 2 }
b) | 2x -1 | = | x + 5|
=>\(\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)=>\(\orbr{\begin{cases}2x-x=1+5\\2x+x=-5+1\end{cases}}\)=>\(\orbr{\begin{cases}x=6\\3x=-4\end{cases}}\)=>\(\orbr{\begin{cases}x=6\\x=\frac{-4}{3}\end{cases}}\)
Vậy x e { 6 ; \(\frac{-4}{3}\)}
Xin lỗi, ở bài a) \(\orbr{\begin{cases}x\in\varnothing\\4x=2\end{cases}}\)=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{2}{4}\end{cases}}\)
Đối chiếu với Đk , ta có x e \(\varnothing\)
Còn bài b) là OK rồi
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
rút gọn thừa số chung
(2x - 1) y - 8x + 4 = -13
đơn giản biểu thức
(2x - 1) y - 8x - ( -13 ) + 4 = 0
giải phương trình
(2x - 1) y - 8x + 17 =0
rút gọn thừa số chung
2x - 1 = 0
đơn giản biểu thức
2x = 1
rút gọn thừa số chung
2 ( y - 4 ) = 0
rút gọn
2 y = 2.4
giải phương trình
y = 4
rút gọn thừa số chung
(5x + 1) y - 5x - 1 = 4
đơn giản biểu thức
(5x + 1) y - 5x - 4 - 1 = 0
giải phương trình
(5x + 1) y - 5x -5 = 0
rút gọn thừa số chung
5x + 1 = 0
đơn giản biểu thức
5x = 1
rút gọn thừa số chung
5 (y - 1) = 0
rút gọn
5 y = 5
giải phương trình
y = 1
=> (2x-6)^10-(2x-6)^8 = 0
=> (2x-6)^8.[(2x-6)^2-1] = 0
=> (2x-6)^8=0 hoặc (2x-6)^2-1=0
=> x=3 hoặc x=7/2 hoặc x=5/2
Mà x thuộc Z => x = 3
Vậy x = 3
Tk mk nha