Tính giá trị biểu thức:
B=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).......\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))
\(=99\)
Tham khảo nhé~
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
Vậy \(A=50\).
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)
\(\Leftrightarrow A=\frac{100}{2}=50\)
Ta có:
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
nha
\(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{98^2}\right)\left(1-\frac{1}{99^2}\right)\)
\(=\frac{3}{2^2}.\frac{8}{3^2}......\frac{9603}{98^2}.\frac{9800}{99^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{97.99}{98^2}.\frac{98.100}{99^2}\)
\(=\frac{1.2.4...97.98}{2.3....98.99}.\frac{3.4...99.100}{2.3....98.99}\)
\(=\frac{1}{99}.\frac{100}{2}\)
\(=\frac{50}{99}\)
bn viết sai 1 chỗ nhưng ko s ^^ tks nhoa