Mỗi cạnh của hình ngũ giác ABACDE được tô 1 trong 3 màu :xanh ,đỏ ,vàng.Hỏi có ?cách tô màu 5 cạnh mà 2 cạnh liền kề khác màu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
TH1: 4 cạnh với 4 màu khác nhau, có A 6 4 = 360 cách.
TH2: 4 cạnh với 3 màu khác nhau, vì 2 cạnh giống màu không được kề nhau nên có 2 cách đặt vị trí cho 2 giống màu (đặt ở vị trí đối diện nhau). Tiếp theo, có 2! cách cho 2 màu còn lại. Vậy có C 6 3 . 3 .2.2 ! = 240
TH3: 4 cạnh với 2 màu khác nhau (giả sử xanh và đỏ), có 2 cách tô (AB=CD=xanh và AD=BC=đỏ/ hoặc AB=CD=đỏ và AD=BC=xanh) Trong trường hợp này có C 6 2 . 2 = 30 cách.
Vậy có tất cả 360 + 240 + 30 = 630 cách.
Đáp án D
Chú ý 4 cạnh khác nhau
Có C 6 4 cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4 ! = 24 cách tô màu khác nhau
Có C 6 3 cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô
Có C 6 2 cách chọn 2 màu khác nhau khi đó có: 2.1 = 2 cách tô
Tổng cộng: 24. C 6 4 + 4.3 C 6 3 + 2. C 6 2 = 630 cách
Đáp án D
Chú ý 4 cạnh khác nhau
Có C 6 4 cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4! = 24 cách tô màu khác nhau.
Có C 6 3 cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô.
Có C 6 2 cách chọn 2 màu khác nhau khi đó có: 2.1 = 2 cách tô.
Tổng cộng: 24 . C 6 4 + 4 . 3 C 6 3 + 2 . C 6 2 = 630 cách.
Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)
Em khoái nhứt là làm tổ hợp trên diễn đàn vì không phải đánh Latex
Bạn ơi, bản chất ý bạn nói thì mik hiểu rõ nhưng mik cần nhờ bạn trình bày chi tiết giùm mik(ko biết cách trình bày ý mà)
Thanks bạn nhìu nha.
Đáp án: 30 cách tô màu.
- Chọn AB là cạnh thứ nhất để tô màu, ta có 3 cách tô cho cạnh này (vì có 3 màu).
- BC và EA là hai cạnh liền kề với AB nên chúng không thể cùng màu với AB, nhưng có thể cùng màu với nhau. Ta chia làm hai trường hợp:
Trường hợp 1: Hai cạnh BC và EA cùng màu.
Ta có hai cách tô màu cho BC và EA (chỉ cần màu đó khác màu cạnh AB).
Màu cần tô vào hai cạnh còn lại CD và DE sẽ trừ đi màu đã tô ở BC, EA và chúng cũng khác màu nhau. Từ đó ta có 2 x 2 - 2 = 2 cách tô màu cho hau cạnh này.
Như vậy, số cách tô màu cho cả hình ngũ giác ở trường hợp 1 là 3 x 2 x 2 = 12 cách.
Trường hợp 2: Hai cạnh BC và EA khác màu.
Ta có 2 x 2 - 2 = 2 cách tô màu cho hai cạnh BC và EA (vì có thể tô 2 màu khác màu của AB vào hai cạnh này nhưng phải trừ đi trường hợp hai cạnh có màu giống nhau ở trường hợp 1).
Cả 3 màu đều có thể tô vào cạnh CD và DE nhưng màu CD phải khác màu BC nên chỉ có hai màu để tô. DE phải khác màu EA nên cũng chỉ còn hai màu để tô. Hai cặp màu tô cho DE và CD chắc chắn có một màu giống nhau, mà DE và CD kề nhau nên phải trừ đi trường hợp chúng cùng màu nhau. Từ đó suy ra số cách tô CD và DE là 2 x 2 - 1 = 3 cách
Như vậy, số cách để tô màu cho cả hình ngũ giác ở trường hợp 2 là
3 x 2 x 3 = 18 cách.
Cộng hai trường hợp đã xét lại, ta có tổng số cách tô màu cho hình ngũ giác này sao cho phù hợp với điều kiện của đề bài là 12 + 18 = 30 cách.
Cảm ơn bạn