K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

8x3+36x2+54x+27

tại x =-4

=>8×(-4)3+36×(-4)2+54×(-4)+27

=8×(-64)+36×16+54×(-4)+27

=-512+576-216+27

=-125

13 tháng 7 2019

(4x-3)(16x2+12x+9)-x2(64x-4)

=4x(16x2+12x+9)- 3(16x2+12x+9)-x2(64x-4)

=(64x3+48x2+36x)-(48x2+36x+27)-(64x3-4x2)

=64x3+48x2+36x-48x2-36x-27-64x3+4x2

=(64x3-64x3)+(48x2-48x2+4x2)+(36x-36x)-27

=4x2-27

tại x=-1/4

=> 4×(-1/4)2-27

=4×1/16-27

=1/4-27

=-107/4

(ko bt cs đúng ko nx haha )

22 tháng 6 2017

\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)

26 tháng 6 2016

   \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)

=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

=\(\frac{6}{a}\)

20 tháng 11 2021

\(\left(2x-5\right)\left(2x+5\right)-\left(2x+1\right)^2=4x^2-25-4x^2-4x-1=-4x-25=\left(-4\right).\left(-2005\right)-26=8020-26=7994\)

9 tháng 6 2021

`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`a)ĐK:a^2-1 ne 0<=>a ne +-1`
`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`=(a-1)^3/((a-1)(a+1))`
`=(a-1)^2/(a+1)`
`b)|a|=5`
`<=>`  \(\left[ \begin{array}{l}a=5\\a=-5\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}Q=\dfrac{(5-1)^2}{5+1}=\dfrac83\\Q=\dfrac{(-5-1)^2}{-5+1}=-9\end{array} \right.\) 

5 tháng 7 2020

a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2\)

b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)

\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)

\(=x^3+x^2+x-x^2-x-1+x^3-2\)

\(=2x^3-3\)

c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2+xy-yx-y^2-2x^2+2xy\)

\(=-x^2-y^2+2xy\)

a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)

b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)

\(=x^3-1+x^3-2=2x^3-3\)

c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)