K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

bạn tham khảo ở câu hỏi tương tự nhé

tick mình đi

10 tháng 12 2015

Có:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)vì a,b,c>0
tương tự \(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từ vế lại \(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)

19 tháng 10 2016

Đặt: \(b+c-a=x;c+a-y=y;a+b-c=z\)

=> \(2a=y+z;2b=x+z;2c=x+y\)

T có:

\(\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\)

Áp dụng bđt cô si cho 2 số dương ta có:

\(\frac{y}{z}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)

=>\(2\left(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\right)\ge6\)

=>\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

19 tháng 10 2016

Đặt \(\begin{cases}b+c-a=x\\c+a-b=y\\a+b-c=z\end{cases}\Rightarrow\begin{cases}y+z=2a\Rightarrow a=\frac{y+z}{2}\\x+z=2b\Rightarrow b=\frac{x+z}{2}\\x+y=2c\Rightarrow c=\frac{x+y}{2}\end{cases}\)

Vì \(x;y;z>0\) vì \(a,b,c\) là các cạnh của tam giác nên \(\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

Vế trái cho ta :

\(\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\right]\)

                              \(\ge\frac{1}{2}\left(2.\frac{x}{y}.\frac{y}{x}+2.\frac{z}{x}.\frac{x}{z}+2.\frac{y}{z}.\frac{z}{x}\right)\)

                              \(\ge\frac{1}{2}.6=3\)

Vậy \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\). ( ĐPCM ) 

 

 

 

31 tháng 7 2018

a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc

                    = 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc

                    = 3abc      ( đpcm)

31 tháng 7 2018

câu 2 chưa rõ đề nha

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

21 tháng 7 2020

khó vl

21 tháng 7 2020

Theo mình đề chứng minh: \(3Min\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

21 tháng 7 2016

2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)

Ta có  : \(\frac{b}{c+a}< \frac{b}{b+c}\)\(\frac{c}{a+b}< \frac{c}{b+c}\)\(\frac{a}{b+c}< 1\)

\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)

b) Đặt \(x=b+c-a\)\(y=c+a-b\)\(z=a+b-c\);

Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)

Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\)\(\frac{y}{z}+\frac{z}{y}\ge2\)\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)

hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)

3 tháng 4 2016

ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )

ta có 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)

tương tự ta có 

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)

cộng theo vế của bđt (1);(2);(3) ta có

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)