chứng minh bất đẳng thức
cho a,b,c là độ dài các cạnh của tam giác CMR:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)vì a,b,c>0
tương tự \(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từ vế lại \(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)
Đặt: \(b+c-a=x;c+a-y=y;a+b-c=z\)
=> \(2a=y+z;2b=x+z;2c=x+y\)
T có:
\(\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\)
Áp dụng bđt cô si cho 2 số dương ta có:
\(\frac{y}{z}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)
=>\(2\left(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\right)\ge6\)
=>\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Đặt \(\begin{cases}b+c-a=x\\c+a-b=y\\a+b-c=z\end{cases}\Rightarrow\begin{cases}y+z=2a\Rightarrow a=\frac{y+z}{2}\\x+z=2b\Rightarrow b=\frac{x+z}{2}\\x+y=2c\Rightarrow c=\frac{x+y}{2}\end{cases}\)
Vì \(x;y;z>0\) vì \(a,b,c\) là các cạnh của tam giác nên \(\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)
Vế trái cho ta :
\(\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(\ge\frac{1}{2}\left(2.\frac{x}{y}.\frac{y}{x}+2.\frac{z}{x}.\frac{x}{z}+2.\frac{y}{z}.\frac{z}{x}\right)\)
\(\ge\frac{1}{2}.6=3\)
Vậy \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\). ( ĐPCM )
a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc
= 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc
= 3abc ( đpcm)
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Theo mình đề chứng minh: \(3Min\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{b}{c+a}< \frac{b}{b+c}\); \(\frac{c}{a+b}< \frac{c}{b+c}\); \(\frac{a}{b+c}< 1\)
\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)
b) Đặt \(x=b+c-a\); \(y=c+a-b\); \(z=a+b-c\);
Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\). \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\); \(\frac{y}{z}+\frac{z}{y}\ge2\); \(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)
hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)
ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )
ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)
tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)
cộng theo vế của bđt (1);(2);(3) ta có
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)