K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

Số các số hạng là:

(1995-1):2+1=998 (số)

Tổng của dãy số trên là:

(1995+1)x998:2=996004

 Đáp số: 996004.

12 tháng 4 2016

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993

<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993

<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993

<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993

<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993

<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993

<=>2.(1/2-1/x+1)=1991/1993

<=>1/2-1/x+1=1991/1993:2=1991/3986

<=> 1/x+1=1/2-1991/3986=2/3986=1/1993

=>x=1993-1=1992

27 tháng 2 2020

Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)

\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)

\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)

\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)

\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)

\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)

Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)

=> x - 2000 = 0 

=> x = 2000

a) Ta so sánh phần bù :

\(\rightarrow\)\(\frac{1}{1991}< \frac{1}{1992}< \frac{1}{1993}\)\(< \frac{1}{1994}< \frac{1}{1995}\)

Vì phần bù càng lớn nên phần số càng nhỏ 

\(\Rightarrow\)Thứ tự tăng dần là : \(\frac{1996}{1995};\frac{1995}{1994};\frac{1994}{1993}\)\(;\frac{1993}{1992};\frac{1992}{1991}\)

b) Làm tương tự câu a

c) Ta so sánh phần bù :

\(\rightarrow\)\(\frac{1}{8}< \frac{1}{18}< \frac{1}{58}< \frac{1}{98}\)

   Vì phần bù lớn hơn thì phân số nhỏ hơn

\(\Rightarrow\)Thứ tự giảm dần là : \(\frac{97}{98};\frac{57}{58};\frac{17}{18};\frac{7}{8}\)

16 tháng 8 2016

Tích 1991 x 1992 x 1993 x 1994 có tận cùng là chữ số 4 ( vì 1 x 2 x 3 x 4 = 24)

Tích 1995 x 1996 x 1997 x 1998 x 1999 có chữ số tận cùng là 0 ( 5 x 6 = 30 ; 30 x 7 x 8 x 9 = .....0 )

Vậy 1991 x 1992 x 1993 x 1994 + 1995 x 1996 x 1997 x 1998 x 1999 có tận cùng là chữ số 4

ở vế 1991 x 1992 x 1993 x 1994 có tận cùng là : 1 x 2 x 3 x 4 = ...4

 vế 1995 x 1996 x 1997 x 1998 x 1999 có tận cùng là : 5 x 6 x 7 x 8 x 9 =   ...0

vậy tổng sau có tận cùng là ...4 + ....0 = .......4

có tận cùng là 4

Bạn tham khảo câu này :

https://olm.vn/hoi-dap/detail/1064107997784.html?pos=2516405291322

Mik giải cho 1 bạn khác rùi !

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Bạn cần làm gì với M?

19 tháng 5 2021

??