Cho P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
a) Rút gọn
b) Tìm GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)
=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)
=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
b/ B>2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)
<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)
c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0
Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0
a.\(DK:x\ge0\)
\(A=\frac{x-2\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}+1}=\sqrt{x}+1\)
b.Dat \(P=\frac{1}{A}\left(x+3\right)=\frac{x+3}{\sqrt{x}+1}\left(P>0\right)\)
\(\Rightarrow P\sqrt{x}+P=x+3\)
\(\Leftrightarrow x-P\sqrt{x}+3-P=0\)
Dat \(t=\sqrt{x}\left(t\ge0\right)\)
Ta co:
\(\Delta\ge0\)
\(\Leftrightarrow P^2-4\left(3-P\right)\ge0\)
\(\Leftrightarrow P^2+4P-12\ge0\)
\(\Leftrightarrow\left(P-2\right)\left(P+6\right)\ge0\)
TH1:
\(\hept{\begin{cases}P-2\ge0\\P+6\ge0\end{cases}\Leftrightarrow P\ge2}\)
TH2:
\(\hept{\begin{cases}P-2\le0\\P+6\le0\end{cases}\Leftrightarrow P\le2\left(P>0\right)}\)
Vi la de bai tim min nen lay TH1 thoi
Dau '=' xay ra khi \(x=\frac{P}{2}=1\)
Vay \(P_{min}=2\)khi \(x=1\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
a)
\(P=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)