cho a,b thuộc N và a + 5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta có :
\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)
\(=21a+7b=7\left(3a+b\right)\)
+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
Mà : 2 và 7 là hai số nguyên tố cùng nhau .
\(\Rightarrow10a+b⋮7\)
Vậy ...
Đặt A = 2a + 7b, B = 4a + 2b
Xét hiệu: 2A - B = 2.(2a + 7b) - (4a + 2b)
= 4a + 14b - 4a - 2b
= 12b
Vì A chia hết cho 3 nên 2A chia hết cho 3; 12b chia hết cho 3
=> B chia hết cho 3 hay 4a + 2b chia hết cho 3 (đpcm)
a+ 5b chia hết cho 7
=> 10*(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+ b + 49 b chia hết cho 7
mà 49b chia hết cho 7
=> 10a+b chia hết cho 7
trình bày đầy đủ, giải hiểu giùm mk nha