Cho x,y>0; xy=4. Tìm giá trị nhỏ nhất của biểu thức:
\(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0
k cho mik nhoa~
Đặt Q = \(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\) = \(\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
Q = \(\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2=}2xy\)
\(\Leftrightarrow\)Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}\)
\(\Leftrightarrow\)Q = \(\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}\)= \(1\)
Đẳng thức xảy ra : \(\Leftrightarrow\hept{\begin{cases}x,y>0\\x=y\Rightarrow\\xy=4\end{cases}x=y=2}\)
Vậy giá trị nhỏ nhất của Q là 1 \(\Leftrightarrow x=y=2\)
CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\)
đặt \(a=2+\sqrt{3}\); \(b=2-\sqrt{3}\)
suy ra: \(a+b=2+\sqrt{3}+2-\sqrt{3}=4\)
và : \(ab=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
Ta có: \(a^{2021}+b^{2021}=\left(a+b\right)\left(a^{2020}-a^{2019}b+a^{2018}b^2-...+a^{1010}b^{1010}-...-ab^{2019}+b^{2020}\right)\)
\(=\left(a+b\right)\left(a^{2020}-a^{2018}ab+a^{2016}a^2b^2-...+a^{1010}b^{1010}-...-abb^{2018}+b^{2020}\right)\)
Vì \(a+b=4\);\(ab=1\)nên:
\(a^{2021}+b^{2021}=4\left(a^{2020}-a^{2018}+a^{2016}-...+1-...-b^{2018}+b^{2020}\right)\)
\(=4\left(a^{2020}+b^{2020}-\left(a^{2018}+b^{2018}\right)+a^{2016}+b^{2016}-...+1\right)\)
\(=4\left(\left(a+b\right)^{2020}-2\left(ab\right)^{1010}-\left(a+b\right)^{2018}+2\left(ab\right)^{1009}+\left(a+b\right)^{2016}-2\left(ab\right)^{1008}-...+1\right)\)\(=4\left(4^{2020}-2-4^{2018}+2+4^{2016}-2-...+1\right)\)
\(=4S\)(Với \(S\inℕ^∗\))
suy ra \(a^{2021}+b^{2021}=4S⋮4\)
Vậy \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\left(đpcm\right)\)