K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

c, Trừ hai vế cho 6 

Vế trái thì lấy từng số hạng trừ 1 là được

8 tháng 2 2018

thế tức là phải như nào hả bạn

1 tháng 6 2017

Ta có :

M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(100\)

N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)

N = \(40\)

\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)

1 tháng 6 2017

thiếu đề r bn

1 tháng 4 2016

A=(  4^5/4+4^5/4^2+4^5/4^3+4^5/4^4  )+.....................+ (  4^101/4^97+....+4^101/4^100  ) 

A = ( 4^4+ 4^3+4^2+4 ) + .........................................+ ( 4^4 + 4^3+4^2+4)

A= ( 4^4 + 4^ 3+ 4^2+4 ) * ( (101-5):4+1)

A = (4^4+4^3+4^2+4) * 25

A =( 256+81+16+4)*25= 8925

        k cho mình nhé 

28 tháng 5 2019

\(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right).\left(1-\frac{3}{13}\right)...\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)

\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)

\(=\frac{1.4.7.10...94.97}{4.7.10.13...97.100}=\frac{1}{100}.\)

25 tháng 3

Tính toán giá trị biểu thức:

Bước 1: Phân tích biểu thức:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5

= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)

= (1 + 3 + 3^2 + 3^3) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 3 + 3^2 + 3^3 = (1 - 3^4) / (1 - 3) = 80

Do đó, giá trị của nhóm thứ nhất là:

(80) . 81 = 6480

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80) . 3^4 . 81 = 6480 . 3^4

Giá trị nhóm thứ ba: (80) . 3^8 . 81 = 6480 . 3^8

...

Giá trị nhóm thứ 25: (80) . 3^96 . 81 = 6480 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96

= 6480 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80

= -81(1 - 3^100)

Vậy, giá trị của biểu thức là -81(1 - 3^100).

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là -81(1 - 3^100).

Chúc bạn thành công!

16 tháng 2 2020

K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)

\(=120+...+120\)(Có 25 số 120)

\(=25.120\)

\(=300\)

vậy ...

14 tháng 3 2018

Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!