B= 1+4+4^2+4^3+...+4^2015.
a)Tính B
b)Tìm chữ số tận cùng của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=32015=(32)1007.3=91007.3=(92)503.9.3=81503.27=(…1)503.(…7)=(…1).(…7)=…7
=>a có chữ số tận cùng là 7
b=2+22+23+24+…+22014
Ta thấy: 2n=…2(n thuộc N*)
=>b=(…2)+(…2)+(…2)+(…2)+…+(…2)
Tổng b có số số hạng là: (2014-0):1+1=2015(số hạng)
=>b=2015.(…2)
=>b=…0
=>b có chữ số tận cùng là 0
chữ số tạn cùng là chữ số 0
nếu tính nhanh thì lấy 2015*2016=4062240 có tận cùng là chữ số 0
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
A=2015+2015^2+2015^3+2015^4+2015^5
=...5+..5+...5+...5+..5
=...5
Vậy A có tận cùng là 5
a, 4B =4+4^2+....+4^2016
3B=4B-B=(4+4^2+.....+4^2016)-(1+4+4^2+....+4^2015) = 4^2016-1
=> B = (4^2016-1)/3
b, Có : 4^2016 = (4^2)^1008 = 6^1008 = ....6
=> B = (....6-1) : 3 = ....5 : 3 = ....5 ( vì B thuộc N sao )
k mk nha
4B=4+42+43+....+42016
4B-B=(4+42+43+...+42016)-(1+4+42+43+...+42015)
3B=42016-1
B=(42016-1)/3