K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

2, TA có:

x + y + xy = 40

=> x(y + 1) + y + 1 = 41

=> (x + 1)(y + 1) = 41

=> x + 1 thuộc Ư(41) = {1; 41}

Xét từng trường hợp rồi thay vào tìm y

3 tháng 1 2018

Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

17 tháng 3 2018

gọi STN đó là a. Ta có:

a-2 chia hết cho 3;4;5;6

a-2 thuộc BC(3,4,5,6)

BCNN(3,4,5,6)=60

a={62;122;...}

vì a nhỏ nhất , a chia 7 dư 3 nên a=122

27 tháng 3 2018

Gọi số tự nhiên đấy là b .

Ta có : a-2 sẽ chia hết cho 3,4,5,6 

nên ta tìm bội chung của chúng ok

      rồi nói với cô giáo cô làm nốt họ em

7 tháng 3 2020

              Giải

Gọi số cần tìm là x.

x chia 3 dư 2 => x - 2 ⋮ 3

x chia 4 dư 2 => x - 2 ⋮ 4

x chia 5 dư 2 => x - 2 ⋮ 5

x chia 6 dư 2 => x - 2 ⋮ 6

⇒x - 2  ∈ BCNN(3;4;5;6)

Ta có : 3 = 3                  4 = 22         5 = 5           6 = 2.3

⇒BCNN(3;4;5;6) = 22 .3.5 = 60

mà B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

⇒BC(3;4;5;6) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

Nếu x - 2 = 0 => ( loại )

Nếu x - 2 = 60 => x = 60 - 2 = 58 ( loại )

Nếu x - 2 = 120 => x = 120 + 2 = 122 ( nhận )

Vì x phải nhỏ nhất nên x = 122

Vậy số tự nhiên nhỏ nhất cần tìm đó là: 122

30 tháng 7 2023

1, Gọi số đó là :a

=>a-3⋮4,6,8

=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)

=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)

Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.

5 tháng 4

Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...

hehe

28 tháng 2 2015

nhầm, bằng 192 đấy

 

28 tháng 2 2015

gọi số đó là a

vì a chia 3,4,5,6 đều dư 12

=>(a-12) chia hết 3,4,5,6

=>(a-12) thuộc BC(3,4,5,6)

3=3 ; 4=2^2 ; 5=5 ; 6=2*3

BCNN(3,4,5,6) = 2^2*3*5 =60

BC(3,4,5,6)=B(60)= {0;60;120;180;...}

vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất

từ tập hợp trên => (a-12)=180 =>a=192

thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^

20 tháng 2 2018

a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)

Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)

=> a - 1 chia hết cho 2;3;4;5;6

Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)

                        => a  = 60 + 1 = 61

(Xem lại đề, vì chỗ chia hết cho 7??)

b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\) 

Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5

                              <=> y = {0;5}

Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9

           Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9

Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9

                 => x = {0;8}

Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9

                  => x = 4

Vậy x = {0;8;4} và y = {0;5}

20 tháng 2 2018

a) Gọi số cần tìm là a 
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán

b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
                                (         9 + x        ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
                               (         14 + x       ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4

20 tháng 11 2017

Ta gọi A là số cần tìm

A : 2,3,4,5 và 6 dư 1

Suy ra A+1 chia hết cho 2,3,4,5 và 6

Suy ra A+1 thuộc BC(2,3,4,5,6)

2=2

3=3

4=22

6=2x3

Suy ra BCNN(2,3,4,5,60=22 x3=12

Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12

Suy ra A+1 thuộc 1,12,24,36

Ta có bảng sau:

                            A+1                                       1                                                             12                                                               24                                                                36                       
                               A                                         0            11             23

            35                      


VÌ A chia hết cho 7 nên A sẽ bằng 35
 

20 tháng 11 2017

                                                                       Giải

Gọi số tự nhiên đó là :a

Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>

Ta có: 2=2

          3=3

           2=2.2

          5=5

          6=2.3

suy ra BCNN<2,3,4,5,6>=2.2.3.5=60

suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)

suy ra a=(1,61,121,181,241,301,...)

Mặt khác a chia hết  cho 7suy ra=241

Vậy số tự nhiên nhỏ nhất cần tìm là:241