K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Theo bài ra ta có:

\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)

Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)

Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)

Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)

Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)

=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)

Ta có đpcm

6 tháng 2 2016

 

 

 

$a=b=\sqrt{2}$a)a,b có thể là số vô tỉ . VD;a=b=2 là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này $a,b$a,b không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  $a=bt$a=bt,  với $t$t là số hữu tỉ khác $-1$1. Khi đó $a+b=b\left(1+t\right)=s$a+b=b(1+t)=s là số hữu tỉ, suy ra $b=\frac{s}{1+t}$b=s1+t  là số hữu tỉ. Vì vậy $a=bt$a=bt  cũng hữu tỉ.

c) Trong trường hợp này $a,b$a,b  có thể là số vô tỉ. Ví dụ ta lấy 

$a=1-\sqrt{3},b=3+\sqrt{3}\to a,b$a=13,b=3+3a,b vô tỉ nhưng $a+b=4$a+b=4  là số hữu tỉ và $a^2b^2=\left(ab\right)^2=12$$a^2b^2=\left(ab\right)^2=12$

a2b2=(ab)2=12 cũng là số hữu tỉ 

 

6 tháng 2 2016

ủa ! 

tui làm đầy đủ mà sao nó chỗ hiện chỗ ko vậy 

???????????????????????

17 tháng 7 2020

Trả lời:

a) a và b có thể là các số vô tỉ

b) a và b không thể là các số vô tỉ

c) a và b không thể là các số vô tỉ

Đây là e nghĩ vậy chớ ko bt đúng sai ra sao đâu ạ!

19 tháng 7 2020

Gợi ý bài làm này! 

+)  Xét các số có thể là số vô tỉ thì đưa ra ví dụ cụ thể

+) Xét các số  là không là số vô tỉ thì chứng minh

a) a; b có thể  là số vô tỉ 

Chứng minh: Lấy VD:  a = \(\sqrt{2}\); b= \(\sqrt{3}\) là 2 số vô tỉ

\(\sqrt{2}.\sqrt{3}=\sqrt{6};\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)thỏa mãn  2 số vô tỉ 

b) a; b không thể là số vô tỉ 

Chứng minh: 

\(\frac{a}{b}\)là số hữu tỉ => tồn tại số hữu tỉ m để: \(\frac{a}{b}=m\)<=> a = mb

khi đó: \(a+b=mb+b=\left(m+1\right)b\) là số hữu tỉ 

mà m là số hữu tỉ => m + 1 là số hữu tỉ  => b là số hữu tỉ 

=> a là số hữu tỉ 

c) a ; b không thể là số vô tỉ 

Chứng minh: 

\(a^2;b^2\)là số hữu tỉ 

=> \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)là số hữu tỉ  mà a + b là số hữu tỉ => a - b là số hữu tỉ 

Đặt: a + b = m; a - b = n => m; n là 2 số hữu tỉ 

=> \(a=\frac{m+n}{2};b=\frac{m-n}{2}\) là 2 số hữu tỉ

4 tháng 7 2018

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

3 tháng 7 2018

mình mới học lớp 7 thôi