K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

a) xét tứ giác AMDN có 
MAN = 90độ (ABC vuông tại A)
DMA = 90độ (DM vuông góc AB,M thuộc AB)
DNA = 90độ (DN vuông góc AC,N thuộc AC)
⇒Tứ giác AMDN là hình chữ nhật (T/c)
⇒AD=MN(T/c hình chữ nhật)(đpcm)

31 tháng 12 2023

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

=>AMDN là hình chữ nhật

=>AD=MN

b: Gọi O là giao điểm của AD và MN

Vì AMDN là hình chữ nhật

nên AD cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AD và MN

Ta có: AD=MN

\(OA=OD=\dfrac{AD}{2}\)

\(OM=ON=\dfrac{MN}{2}\)

Do đó: OA=OD=OM=ON=AD/2=MN/2

Ta có: ΔHAD vuông tại H

mà HO là đường trung tuyến

nên \(HO=\dfrac{AD}{2}\)

mà AD=MN

nên \(HO=\dfrac{MN}{2}\)

Xét ΔNMH có

HO là đường trung tuyến

\(HO=\dfrac{MN}{2}\)

Do đó: ΔNHM vuông tại H

=>\(\widehat{MHN}=90^0\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)

hay AH=2,4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)

a: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

=>AMDN là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MN//AB

=>N là trung điểm của AC

c: Xét tứ giác ADCE có

N là trung điểm chung của AC và DE

Do đó: ADCE là hình bình hành

mà DA=DC

nên ADCE là hình thoi

d: ADCE là hình thoi

=>AE//CD

=>AE//BC

=>AECB là hình thang

Để AECB là hình thang cân thì góc ABC=góc ECB

=>góc ABC=2*góc ACB

mà góc ABC+góc ACB=90 độ

nên góc ABC=2/3*90=60 độ

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có

AM chung

MD=MI

Do đó:ΔAMD=ΔAMI

Xét ΔAND vuông tại N và ΔANK vuông tại N có

AN chung

ND=NK

Do đó: ΔAND=ΔANK

b: \(\widehat{IAK}=2\cdot\left(\widehat{DAM}+\widehat{DAN}\right)=2\cdot90^0=180^0\)

=>I,A,K thẳng hàng

c: Ta có: I,A,K thẳng hàng

mà AI=AK(=AD)

nên A là trung điểm của KI

23 tháng 2 2022

anh ơi hai tam giác trên bằng nhau theo trường hợp nào ạ