Cho tam giác ABC cân tại A, 2 đường cao AH và BK. Gọi E là hình chiếu của H trên AC, BE giao AH tại I. AM là đường trung tuyến của tam giác AHE. AM cắt BC và BK lần lượt tại F và N. Hỏi tứ giác FINE là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
=>AM/AC=AN/AB
=>góc AMN=góc ACB
=>góc NMB+góc NCB=180 độ
=>NMBC nội tiếp
b: kẻ đường kính AL
góc ACL=90 độ
AC*AN=AH^2
ΔAIN đồng dạng với ΔACE
=>AI/AC=AN/AE
=>AI*AE=AH^2
góc ADE=90 độ
=>ΔADE vuông tại D
=>AI*AE=AD^2=AH^2
=>AD=AH
Gọi O là giao của EF và AH, K là giao AM và EF
Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn
Do đó \(OE=OF=OH=OA\)
\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)
Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)
\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)
Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)
Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)
Vậy AM vuông góc EF
???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần lượt tại M và N " ?