Cho tam giác DEFF có DE=8m EF=12cm\(\widehat{DEF}\)=30 độ. tính diện tích tam giác DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔDEF có \(FE^2=DE^2+DF^2\left(13^2=5^2+12^2\right)\)
nên ΔDEF vuông tại D(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền FE, ta được:
\(DK\cdot FE=DE\cdot DF\)
\(\Leftrightarrow DK\cdot13=12\cdot5=60\)
hay \(DK=\dfrac{60}{13}\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:
\(KD^2+KE^2=DE^2\)
\(\Leftrightarrow KE^2=5^2-\dfrac{3600}{169}=\dfrac{625}{169}\)
hay \(KE=\dfrac{25}{13}\left(cm\right)\)
\(\Leftrightarrow S_{KDE}=\dfrac{KE\cdot KD}{2}=\dfrac{\dfrac{25}{13}\cdot\dfrac{60}{13}}{2}=\dfrac{1500}{169}\cdot\dfrac{1}{2}=\dfrac{750}{169}\left(cm^2\right)\)
a: Xét ΔABC và ΔDEF có
góc A=góc D
góc B=góc E
=>ΔABC đồng dạng vơi ΔDEF
=>AB/DE=AC/DF=BC/EF
=>8/6=AC/DF=10/EF
=>EF=10*6/8=7,5cm và AC/DF=4/3
=>4DF=3AC
mà AC-DF=3
nên DF=9cm; AC=12cm
b: ΔABC đồng dạng với ΔDEF
=>S ABC/S DEF=(4/3)^2=16/9
=>S DEF=22,325625(cm2)
a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.