K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Ta có: \(4xy\le\left(x+y\right)^2\)

Lại có: \(x;y>0\)

\(\Rightarrow\left(x+y\right)^2xy>0\)

\(\Rightarrow\frac{4xy}{\left(x+y\right)^2xy}\le\frac{\left(x+y\right)^2}{\left(x+y\right)^2xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)

30 tháng 12 2017

Ta có :

\(\left(x+y\right)^2-4xy\)

\(=x^2+2xy+y^2-4xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

Lại có : \(x,y>0\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{4}{4xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)<đpcm>

7 tháng 11 2018

Phương trình đề bài cho tương đương:    

      \(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)

\(\Rightarrow x+y=-2\)

Ta có: \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)

7 tháng 11 2018

Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

27 tháng 3 2019

Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:

\(x^4+y^2\ge2x^2y\)

\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)

NV
8 tháng 6 2019

BĐT Vasc cơ bản:

Cho các số dương \(abc=1\) thì:

\(\sum\frac{1}{a^2+a+1}\ge1\)

Chứng minh:

Đặt \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\) thì BĐT trở thành:

\(\sum\frac{x^4}{x^4+x^2yz+y^2z^2}\ge1\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+y^2xz+z^2xy+x^2y^2+y^2z^2+z^2x^2}\ge1\)

Nhân chéo và thực hiện khai triển:

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)

Sau đó rút gọn ta được:

\(x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)

BĐT trên chính là dạng \(a^2+b^2+c^2\ge ab+ac+bc\)

Vậy BĐT đã được chứng minh xong

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

28 tháng 12 2019

BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)

\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)

\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))

Vậy BĐT đã được chứng minh khi x = y = z

NV
21 tháng 10 2019

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

NV
21 tháng 10 2019

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m