K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

hello

  

29 tháng 12 2017

a)A=1(6x-x2x+1+10x2-1)x-1(6x-x2x+1+10x2-1)x+12-5xx-5xx+12-1

A=\(14-10x^2-1\)

b)thay 1 vao A ta có

\(A=14-10.1^2-1=14-10-1=13\)

thay -1 vào A ta có

\(A=14-10\left(-1\right)^2-1=14+10-1=23\)

vậy với x=+-1 thì x luôn dương

c)

22 tháng 8 2019

a) x ≠ 0 ,    x ≠     − 2  

b) Ta có D = x 2  - 2x - 2.

c) Chú ý D = - x 2 - 2x - 2 = - ( x   +   1 ) 2  - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.

16 tháng 1 2017

Điều kiện x ≠ -2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x + 1 2 ≥ 0 nên - x + 1 2 ≤ 0 ⇒ - x + 1 2 - 1 ≤ - 1

Khi đó biểu thức có giá trị lớn nhất bằng -1 khi x = -1

Vậy biểu thức đã cho có giá trị lớn nhất bằng -1 tại x = -1.

7 tháng 12 2021

\(a,ĐK:x\ne2\\ b,A=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\\ c,x=\dfrac{2021}{1010}\Leftrightarrow A=\dfrac{3}{\dfrac{2021}{1010}-\dfrac{2020}{1010}}=\dfrac{3}{\dfrac{1}{1010}}=3030\)

25 tháng 12 2017

a) rút gọn ta được \(A=\dfrac{-x^2+6x-10}{2}\)

b) ta thấy tử phân tích thành \(-\left(x-3\right)^2-1\le-1< 0\)

-> A <0

c)vì tử luôn \(\le\)1-> \(A\le-\dfrac{1}{2}\)dấu bằng sảy ra khi x=3

25 tháng 12 2017

đủ hơn đi bn

a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)

\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)

b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)

c: x^2+1>=0

=>3/x^2+1>=0

=>-3/x^2+1<=0

=>A<=0(ĐPCM)

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

15 tháng 11 2016

\(A=x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy A > 0 với mọi x.

\(B=x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)

Vậy B > 0 với mọi x, y.

\(M=x^2-6x+12\)

\(=x^2-6x+9+3\)

\(=\left(x-3\right)^2+3\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+3\ge3\)

\(MinB=3\Leftrightarrow x=3\)

\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)

\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)

\(2x^2+6x+5-2x^2+4x-2=7\)

\(10x=7+3\)

\(10x=10\)

\(x=1\)

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

\(x^3-\frac{1}{4}x=0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)

\(\left(x+10\right)^2-\left(x^2+2x\right)\)

\(=x^2+20x+100-x^2-2x\)

\(=18x+100\)

\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)

\(=x^2-4+x^3-1-x^3-x^2\)

\(=-5\)