\(\left(\frac{x}{y}-1\right)\times\left(\frac{y}{z}+1\right)\times\left(\frac{z}{x}-1\right)\) với x, y, z \(\ne0\)và \(x-y-z=0\)
Giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x-y-z=0\Rightarrow x-z=y,z-y=x,y-x=-z\)
\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)
\(\Rightarrow B=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z-y}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=\frac{-xyz}{xyz}=-1\)
x - y - z = 0
=> x = y + z
y = x - z
-z = x - y
Thay vào B ta được :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)\)
\(=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1-\frac{x-z}{z}\right)\)
\(=\left(\frac{-y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{-x}{z}\right)\)
\(=\frac{-yz\left(-x\right)}{xyz}\)
\(=\frac{xyz}{xyz}=1\)
Mình k dám chắc nhá
Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0
Tới đây bạn tự làm nhé :)
Xét x + y + z = 0
\(\Rightarrow1\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thế vào dãy tỷ số phía dưới thì được
- 2 = - 2 = - 2 (đúng)
Thế ngược lên P ta được P = - 1
Xét x + y + z \(\ne\)0
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thế lên P ta được
\(P=\frac{2x.2y.2z}{x.y.z}=8\)
Ủa không phải cái phân thức thứ 3 là (- x + y + z)/x sao???
Ta có :
x - y - z = 0
\(\Rightarrow\hept{\begin{cases}x=y+z\\y=x-z\\-z=y-x\end{cases}}\)
\(M=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay các x , y, z vào đẳng thức M , ta sẽ có :
\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-\frac{z}{z}=-1\)
=> Với x - y - z = 0 (\(\forall x,y,z\ne0\)) thì M = -1
\(\left(\frac{x}{y}-1\right).\left(\frac{y}{z}+1\right).\left(\frac{z}{x}-1\right)\)=\(\left(\frac{x-y}{y}\right).\left(\frac{y+z}{z}\right).\left(\frac{z-x}{x}\right)\)
ta có:x-y-z=0
\(\rightarrow\)x-y=z
\(\rightarrow\)y+z=x
\(\rightarrow\)z-x=-y
thay các số trên vào bt,ta đc:
\(\frac{z}{y}.\frac{x}{z}.\frac{-y}{x}\)= -1