chứng minh rằng với mọi số nguyên n thì :
(n+2)2-(n-2)2chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=4\cdot2n=8n⋮8\)
b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)
\(=12\cdot\left(2n+2\right)\)
\(=24\left(n+1\right)⋮24\)
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)
đề đó mình nghĩ vậy
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(5\left(n^2+n+2\right)⋮5\)
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
sai
trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)
=>2^n-1.10 chia hết cho 10
Ta có:
\(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left[\left(n+2\right)+\left(n-2\right)\right]\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=2n\cdot4\)
\(=8n\)
Vì \(8n⋮8\)
\(\Rightarrow\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
Vậy...
n2+n+2 = n(n+1)+2
n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))
n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3
n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3
n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3
vậy với mọi n đều không chia hết
Áp dụng hằng đẳng thức đáng nhớ ta có :
( n+2 )^2 - ( n - 2 )^2 = ( n^2 + 4n + 2^2 ) - ( n^2 - 4n + 2^2 )
= n^2 + 4n + 4 - n^2 + 4n - 4 = 8n
=> Chia hết cho 8