K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ta có: 

\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có: 3b=c

Thay (3) và (1) ta có: 2b=a

Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017

9 tháng 10 2019

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

9 tháng 10 2019

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4

17 tháng 8 2016

ko biet lam

17 tháng 8 2016

bạn khá thông minh 

nhưg sorry mình k thể k cho bb đc nha

1 tháng 1 2020

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{c+a}{5}=\frac{b+c}{4}=\frac{a+b}{3}=\frac{c+b-b-c+a+b}{5-4+3}=\frac{2a}{4}=\frac{a}{4}\left(1\right)\)

Từ (1) có: \(\frac{b+c}{4}=\frac{a+b}{3}\Leftrightarrow3b+3c=4a+4b\Leftrightarrow b=3c-4a\left(2\right)\)

Thế 2 vào biểu thức  M ta có: \(M=10a+3c-4a-7c+2017=6a-4c+2017\left(3\right)\)

Từ (1) có\(:\frac{c+a}{5}=\frac{a}{2}\Leftrightarrow2c+2a=5a\Leftrightarrow2c=3a\Leftrightarrow4c=6a\left(4\right)\)

Thế (4) vào (3) ta có: \(M=6a-6a+2017=2017\)

Vậy GT M = 2017

1 tháng 1 2020

+ Ta có : \(\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\)

                                                 \(\Rightarrow4a+b=3c\)

             + \(\frac{a+b}{3}=\frac{c+a}{5}\Rightarrow5a+5b=3c+3a\)

                                                 \(\Rightarrow2a+5b=3c\)

            + \(\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\)

                                                 \(\Rightarrow5b+c=4a\)

+ Ta có : \(\hept{\begin{cases}4a+b=3c\\5b+3a=3c\end{cases}\Rightarrow4a+b=5b+2a}\)

                                                         \(\Rightarrow2a=4b\)

                                                             \(\Rightarrow a=2b\)

+ Ta có : \(4a+b=3c\)

\(\Rightarrow4.2b+b=3c\)

\(9b=3c\)

\(\Rightarrow3b=c\)

+ Ta có : \(M=10a+b-7c+2017\)

                    \(=10.2b+b-7.3b+2017\)         

                       \(=20b+b-7.3b+2017\)

                         \(=21b-21b+2017\)

                              \(=0+2017=2017\)

Vậy M =2017 

Chúc bạn học tốt !!!

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

8 tháng 10 2017

Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\)    ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\)    ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)