Cho các số a,b,c>0 và \(\frac{a+b}{3}\)= \(\frac{b+c}{4}\)= \(\frac{c+a}{5}\)
Tính giá trị của biểu thức M= 10a+b-7c+201
Mong các bạn giúp mình với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)
Thay (2) vào (1) ta có: 3b=c
Thay (3) và (1) ta có: 2b=a
Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017
bạn khá thông minh
nhưg sorry mình k thể k cho bb đc nha
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{c+a}{5}=\frac{b+c}{4}=\frac{a+b}{3}=\frac{c+b-b-c+a+b}{5-4+3}=\frac{2a}{4}=\frac{a}{4}\left(1\right)\)
Từ (1) có: \(\frac{b+c}{4}=\frac{a+b}{3}\Leftrightarrow3b+3c=4a+4b\Leftrightarrow b=3c-4a\left(2\right)\)
Thế 2 vào biểu thức M ta có: \(M=10a+3c-4a-7c+2017=6a-4c+2017\left(3\right)\)
Từ (1) có\(:\frac{c+a}{5}=\frac{a}{2}\Leftrightarrow2c+2a=5a\Leftrightarrow2c=3a\Leftrightarrow4c=6a\left(4\right)\)
Thế (4) vào (3) ta có: \(M=6a-6a+2017=2017\)
Vậy GT M = 2017
+ Ta có : \(\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\)
\(\Rightarrow4a+b=3c\)
+ \(\frac{a+b}{3}=\frac{c+a}{5}\Rightarrow5a+5b=3c+3a\)
\(\Rightarrow2a+5b=3c\)
+ \(\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\)
\(\Rightarrow5b+c=4a\)
+ Ta có : \(\hept{\begin{cases}4a+b=3c\\5b+3a=3c\end{cases}\Rightarrow4a+b=5b+2a}\)
\(\Rightarrow2a=4b\)
\(\Rightarrow a=2b\)
+ Ta có : \(4a+b=3c\)
\(\Rightarrow4.2b+b=3c\)
\(9b=3c\)
\(\Rightarrow3b=c\)
+ Ta có : \(M=10a+b-7c+2017\)
\(=10.2b+b-7.3b+2017\)
\(=20b+b-7.3b+2017\)
\(=21b-21b+2017\)
\(=0+2017=2017\)
Vậy M =2017
Chúc bạn học tốt !!!
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\) ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)