Xác định hệ số a để đa thức P(x)=x^2-4x+a có nghiệm là 2
Mọi người giúp mình với . Thank you so much!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định hệ số a để đa thức P(x)=x^2-4x+a có nghiệm là 2
Mọi người giúp mình với . Thank you so much!
Đặt \(F\left(x\right)=x^2-16=0\)( mình sửa đề nhé )
\(\Leftrightarrow x^2=16\Leftrightarrow x=4;x=-4\)
Thay x = 4 vào G(x) ta được : \(32+4a+b=0\)(*)
Thay x = -4 vào G(x) ta được : \(32-4a+b=0\)(**)
Lấy (*) + (**) ta được : \(64+2b=0\Leftrightarrow2b=-64\Leftrightarrow b=-32\)(***)
Thay (***) vào (*) \(32+4a-32=0\Leftrightarrow a=0\)
Vậy ( a ; b ) = ( 0 ; -32 )
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Chọn C
Để x = 2 là nghiệm của đa thức P(x) = x2 - 5x + a thì P(2) = 0
Khi đó ta có 22 - 5.2 + a = 0 ⇒ -6 + a = 0 ⇒ a = 6.
Chọn D
Để x = -1 là nghiệm của đa thức P(x) = x2 + x + a thì P(-1) = 0
Khi đó ta có (-1)2 + (-1) + a = 0 ⇒ a = 0.
Vì đa thức P(x) = x2 - 4a + 4 nhận 2 là nghiệm nên ta có:
P(2) = 0 ⇒ 4 - 4a + 4 = 0 ⇒ 8 - 2a = 0 ⇒ a = 4 (1 điểm)
Để f(x) có 1 nghiệm là -2 thì: m.(-2)2+2.(-2)+16=0
=>4m-4+16=0
=>4m=-12
=>m=-3
Vậy m=-3 thì f(x) có 1 nghiệm là -2
f(x)=mx2+2x+16
=>f(-2)=m.(-2)2+2.(-2)+16=0
=>m.4+(-4)+16=0
=>m.4+12=0
=>m.4=-12
=>m=-3
Để : P(2) = 0
=> 22 - 4.2 + a = 0
=> -4 + a = 0
=> a = 4
Vậy a = 2 thì P(2) = 0