Cho số tự nhiên A= 4+ 42 + 43+ .....+449 +450 .Tìm số dư khi đem A chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Nguyễn Khánh Linh
bn có thể tham khảo bài làm tương tự tại :
Câu hỏi của nguyễn văn thành - Toán lớp 6 - Học toán với OnlineMath
(bấm vào dòng chữ màu xanh)
chúc các bn hok tốt !
Ta có : a chia 6 dư 2 => a - 2 chia hết cho 6 => a - 2 + 12 chia hết cho 6 => a + 10 chia hết cho 6
a chia 7 dư 4 => a - 4 chia hết cho 7 => a - 4 + 14 chia hết cho 7 => a + 10 chia hết cho 7
=> a + 10 chia hết cho 6 và 7
=. a + 10 thuộc BC ( 6 ; 7 )
Mà BCNN ( 6 ; 7 ) = 42
=> a + 10 thuộc B ( 42 ) = { 0 ; 42 ; ... }
=> a + 10 chia 42 dư 42
=> a chia 42 dư 32
Vậy số a chia cho 42 dư 32
Vì 4.4+3=19;5.5+4=29;6.6+5=41
Suy ra 19+29+41=89;Ta có:
5-(4-3)=4
Nên 89.4=356
Vậy a=356
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
A=(4+42)+(43+44)+.....+(449+450)
A=20+42.(4+42)+....+448.(4+42)
A=20+42.20+....+448.20
A=20.(42+...+448)
A chia het cho 5
Ai giải nhanh nhất. Mk tặng 1 k