Cho x+y+z=1,
x2+y2+z2=1 va xyz=1.
Cm: \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\)
Ai giải được bài này là giỏi đấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)
\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)
Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)
\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)
\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)
Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)
\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)
\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)
Lại có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)
\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)
\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm )
Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Chúc bạn học tốt ~
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)
Có BĐT phụ:
\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Áp dụng
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)
\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)
\(=\frac{1}{xyz}\)
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta lại có:
\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x+y+z=1\)
Làm nốt
x,y,z là số thực à khó đấy số dương thì mk còn làm đc
chứ số thực mk chịu
Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)
CM tương tự với các phân thức còn lại
Cộng vế theo vế các BĐT đó ta được:
\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy Max A=1 <=> x=y=z=1
áp dụng bđt cosi ta có:
\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)
tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)
dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)
\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)
\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1
khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
vậy max A là 1 khi x=y=z=1
Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)
Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)
Dấu = xra khi a=b=c và abc=1 =>a=b=c=1
Với x2+y2+z2=1 ta có:
x+y+z=1=> (x+y+z)2=1
=> x2+y2+z2+2.(xy+yz+zx)=1
=> 1+2.(xy+yz+zx)=1
=> 2.(xy+yz+zx)=0 => xy+yz+zx=0
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc.
Áp dụng vào bài toán ta có xy+yz+zx=0 => (xy)3+(yz)3+(zx)3=3.(xyz)2
Với xyz=1 và (xy)3+(yz)3+(zx)3=3.(xyz)2 ta có\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{\left(xyz\right)^3}=\frac{3.\left(xyz\right)^2}{xyz}=\frac{3}{xyz}=3\)
=> đpcm