Cho tam giác OAB có OA = OB có tia phân giác góc AOB cắt cạnh AB tại D
Chứng minh
a) \(\Delta AOD\) = \(\Delta BOD\)
b) OD \(\perp\)AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOD và ΔBOD có
OA=OB
\(\widehat{AOD}=\widehat{BOD}\)
OD chung
Do đó: ΔAOD=ΔBOD
a: Xét ΔAOD và ΔBOD có
OA=OB
\(\widehat{AOD}=\widehat{BOD}\)
OD chung
Do đó: ΔAOD=ΔBOD
b: Ta có: ΔAOD=ΔBOD
nên DA=DB
c: Ta có: ΔAOB cân tại O
mà OD là đường phân giác
nên OD là đường cao
Ta có hình vẽ:
Xét tam giác OAD và tam giác OBD có:
OA = OB (GT)
\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)
OD: cạnh chung
=> tam giác OAD = tam giác OBD (c.g.c)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)
Mà \(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900
Vậy OD \(\perp\)AB (đpcm)
Ta có hình vẽ sau:
Xét ΔOAD và ΔOBD có:
OD là cạnh chung
\(\widehat{O_1}=\widehat{O_2}\) (gt)
OA = OB (gt)
=> ΔOAD = ΔOBD (c-g-c)
=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)
mà \(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)
=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o
=> OD \(\perp\) AB (đpcm)
a,Xét \(\Delta AOB\)và \(\Delta COD\)có :
\(OC=OA\)(gt)
\(OD=OB\)(gt)
\(O_1=O_2\)(đối đỉnh)
\(=>\Delta AOB=\Delta COD\left(c-g-c\right)\)
b,Ta có :\(DCO=BAO\)(cm câu a)
Do 2 góc này ở vị trí so le trong và bằng nhau
\(=>AB//CD\)
Xét \(\Delta DAO\)và \(\Delta BCO\)có :
\(OC=OA\)(gt)
\(OB=OD\)(gt)
\(COB=AOD\)(đối đỉnh)
\(=>\Delta DAO=\Delta BCO\left(c-g-c\right)\)
\(=>ODA=OBC\)(2 góc tương ứng)
Do 2 góc này ở vị trí so le trong và bằng nhau
\(=>DA//BC\)
Gọi giao điểm của CE và DO là H
giao điểm của AO và BE là G
Lại có \(DCO=BAO=>\frac{DCO}{2}=\frac{BAO}{2}=>FAG=HCO\)
\(FGA=CGE\)( đối đỉnh)
Xét \(\Delta AGF\)và \(\Delta CGE\):
\(AFG+FGA+FAG=GEC+CGE+ECG=180^0\)
Do \(FAG+FGA=CGE+ECG\)
\(=>CEG=AFG\)
Vì 2 góc này ở vị trí so le trong và bằng nhau
\(=>CE//AF\)
c,Ta có \(CEB=AFG\)(cm câu b)
Mà \(AFG=\frac{CAB+DBA}{2}=\frac{CAB+CDB}{2}\)(CDB = DBA Ta cm ở câu a)
\(=>CEB=\frac{CAB+CDB}{2}\left(đpcm\right)\)
a, xét ΔAOB và ΔCOD có : OA = OC (Gt)
OB = OD (gt)
^AOB = ^COD (đối đỉnh)
=> ΔAOB = ΔCAOD (c-g-c)
b, ΔAOB = ΔCAOD (Câu a)
=> ^CDO = ^OBA (định nghĩa) mà 2 góc này so le trong
=> DC // AB (Định lí)
xét ΔODA và ΔOBC có : OA = OC (gt)
OB = OD (gt)
^DOA = ^BOC (đối đỉnh)
=> ΔODA = ΔOBC (c-g-c)
=> ^ADO = ^OBC (đn) mà 2 góc này so le trong
=> AD // BC (định lí)
ΔAOB = ΔCOD (câu a)
=> ^DCO = ^OAB (định nghĩa)
CE là phân giác của ^DCO (gt) => ^ECO = ^DCO : 2 (tính chất)
AF là phân giác của ^OAB (gt) => ^OAF = ^OAB : 2 (tính chất)
=> ^ECO = ^OAF mà 2 góc này so le trong
=> CE // AF (định lí)
c, mjnh không biết làm
Xét TG AOD và TG BOD có
+OA=OB(gt)
+O1=O2(Vì Oa là tia phân giác của góc AOB)
+OD chung
=> TG AOD=TG BOD (c-g-c)
=>Góc D1=D2 (hai góc tương ứng)
Mà góc D1+D2=180(định lý)
=>D1=D2=180/2=90
=>OD vuông góc tại AB
Câu này vẽ hình dễ mấy cả nhớ đánh dấu nha. Sai bảo mình