CMR : A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20 < 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)
\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)
Vậy \(A< \dfrac{1}{4}\)
a chứng minh được bài toán tổng quát sau
2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]
Áp dụng:
ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20
= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380
=> A = 189/ 760 < 1/4
Nhận thấy: 1�⋅(�+1)⋅(�+2)=22⋅�⋅(�+1)⋅(�+2)=2+�−�2�⋅(�+1)⋅(�+2)=12⋅[2+�−��⋅(�+1)⋅(�+2)]=12⋅[2+��⋅(�+1)⋅(�+2)−��⋅(�+1)⋅(�+2)]=12⋅[1�⋅(�+1)−1(�+1)⋅(�+2)]n⋅(n+1)⋅(n+2)1=2⋅n⋅(n+1)⋅(n+2)2=2n⋅(n+1)⋅(n+2)2+n−n=21⋅[n⋅(n+1)⋅(n+2)2+n−n]=21⋅[n⋅(n+1)⋅(n+2)2+n−n⋅(n+1)⋅(n+2)n]=21⋅[n⋅(n+1)1−(n+1)⋅(n+2)1]
⇒�=11⋅2⋅3+12⋅3⋅4+...+118⋅19⋅20=12⋅[11⋅2−12⋅3+12⋅3−13⋅4+...+118⋅19−119⋅20]=12⋅[11⋅2−119⋅20]=14−1760<14⇒A=1⋅2⋅31+2⋅3⋅41+...+18⋅19⋅201=21⋅[1⋅21−2⋅31+2⋅31−3⋅41+...+18⋅191−19⋅201]=21⋅[1⋅21−19⋅201]=41−7601<41
Vậy �<14A<41
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}< \frac{1}{2}\)
\(2S< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{4}\) (ĐPCM)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{4}-\frac{1}{760}\)
=> S < \(\frac{1}{4}\)( vì 1/4 > 0)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}\)
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)
A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(A=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\)