K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

\(\dfrac{\sqrt{x-1}}{\sqrt{x+3}}=\dfrac{\sqrt{x-2}}{1}\)(Đk x>2;x≠-3)

\(\sqrt{\left(x-2\right)\left(x+3\right)}=\sqrt{x-1}\)

\(\left(x-2\right)\left(x+3\right)=x-1\)

\(x^2+x-6-x+1=0\)

\(x^2-5=0\)

\(x^2=5\)

⇔x=\(\pm\sqrt{5}\)(thỏa điều kiện)

Vậyx=\(\pm\sqrt{5}\)

25 tháng 5 2021

ĐKXĐ:x khác -3; x≥2

quy đồng và khử mẩu 2 vế ta đc:

\(\sqrt{x-1}=\sqrt{x-2}\cdot\sqrt{x+3}\)Bình phương 2 vế ta đc:

x-1=(x-2)*(x+3)<=> x-1=x2+x-6 <=>  x2-5=0

<=>\(\left\{{}\begin{matrix}x=\sqrt{5}\left(nhận\right)\\x=-\sqrt{5}\left(loại\right)\end{matrix}\right.\)

vậy x=\(\sqrt{5}\)

12 tháng 1 2022

\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)

Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)

1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)

=>4x+8=3x-1

=>x=-9

2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)

=>8x-4=5x-7

=>3x=-3

=>x=-1

3: ĐKXD: x>=0

\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

=>\(x+\sqrt{x}-6=x-1\)

=>căn x=-1+6=5

=>x=25

4: ĐKXĐ: x>=0

PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

=>x-2*căn x-3=x-4

=>-2căn x-3=-4

=>2căn x+3=4

=>2căn x=1

=>căn x=1/2

=>x=1/4

10 tháng 12 2023

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3-2\left(\sqrt{x}-1\right)+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(ĐặtP=\dfrac{A}{B}\)

=>\(P=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}-2}{\sqrt{x}}\)

Để P<1 thì P-1<0

=>\(\dfrac{2\sqrt{x}-2-\sqrt{x}}{\sqrt{x}}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

21 tháng 9 2023

\(\dfrac{1}{\sqrt{x}+2}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{5}>0\)

\(\Leftrightarrow\dfrac{5}{5\sqrt{x}+10}-\dfrac{\sqrt{x}+2}{5\sqrt{x}+10}>0\)

\(\Leftrightarrow\dfrac{5-\sqrt{x}-2}{5\sqrt{x}+10}>0\)

\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-3\right)}{5\sqrt{x}+10}>0\)

Mà: \(5\sqrt{x}+10\ge10>0\forall x\)

\(\Leftrightarrow\sqrt{x}>3\)

\(\Leftrightarrow x>9\)

_________

\(\dfrac{2}{\sqrt{x}+3}< \dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{4}{2\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+6}< 0\)

\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\sqrt{x}+6}< 0\)

\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-1\right)}{2\sqrt{x}+6}< 0\)

Mà: \(2\sqrt{x}+6\ge6>0\forall x\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

\(\Leftrightarrow0\le x\le1\)

a: \(P=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}\)

Khi x=4-2căn 3 thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\sqrt{3}+3}{2}\)

1: ĐKXĐ: \(-1< x< 1\)

2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)

3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)

4: ĐKXĐ: \(2< a\le3\)

ĐKXĐ: x>=0; x<>1

\(B=\dfrac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{x-1}:\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{x-1}\cdot\dfrac{x-1}{x+2\sqrt{x}+1-x+2\sqrt{x}-1}\)

\(=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)

Khi \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\left(\dfrac{\sqrt{3}-1}{2}\right)^2\) thì:

\(B=\dfrac{2\cdot\dfrac{2-\sqrt{3}}{2}+2\cdot\dfrac{\sqrt{3}-1}{2}+1}{4\cdot\dfrac{\sqrt{3}-1}{2}}\)

\(=\dfrac{2-\sqrt{3}+\sqrt{3}-1+1}{2\left(\sqrt{3}-1\right)}=\dfrac{2}{2\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{2}\)

30 tháng 8 2023

Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))

\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)

Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)

\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)

\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)

\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)

Ta thấy: \(9\sqrt{x}+18>0\forall x\)

\(\Rightarrow8\sqrt{x}-18< 0\)

\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)

\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)

Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)

\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)

#Urushi