K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

hinh nhu ban viet sai de bai,cau a phai la hinh binh hanh chu

16 tháng 12 2017

tam giác ABC vuông tại A kìa

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Xét ΔABC có

E là trung điểm của BA

EM//AC

Do đó: M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình

=>EF//BC

=>EF//MH

ΔHAC vuông tại H

mà HF là đường trung tuyến

nên \(HF=AF\)

mà AF=ME(AEMF là hình chữ nhật)

nên ME=FH

Xét tứ giác MHEF có MH//EF

nên MHEFlà hình thang

mà ME=FH

nên MHEF là hình thang cân

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

 Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN

a: Xét tứ giác ADHE co

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: IO//AC

AC vuông góc HE

=>IO vuông góc HE

mà ΔOEH cân tại O

nên góc EOI=góc HOI

Xét ΔEOI và ΔHOI có

OE=OH

góc EOI=góc HOI

OI chung

Do đó: ΔEOI=ΔHOI

=>góc EIO=góc HIO

=>IO là phân giác của góc EIH

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

b: Để AEDF là hình thang vuông thì góc A=90 độ

a: Xét ΔBDF và ΔEFD có 

\(\widehat{BDF}=\widehat{EFD}\)

DF chung

\(\widehat{BFD}=\widehat{EDF}\)

Do đó: ΔBDF=ΔEFD

Suy ra: BD=EF

mà BD=AD

nen EF=AD

b: Xét ΔADE và ΔEFC có

\(\widehat{A}=\widehat{FEC}\)

AD=EF

\(\widehat{ADE}=\widehat{EFC}\)

Do đó: ΔADE=ΔEFC

c: Xét ΔABC có

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

Xét ΔABC có

E là trung điểm của AC

EF//AB

Do đó: F là trung điểm của BC