cho hàm số y=f(x)=2x^2+7. Chứng tỏ rằng f(-x)= f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f (-3/2) = 1 - 2.(-3/2) = 1 - (-3) = 4
f (3/2) = 1 - 2.(3/2) = 1 - 3 = -2
Vậy f (-3/2) > f (3/2)
Bài này dễ thôi bạn ak!hihi
- Ta có:f(-3/2)=1-2.(-3/2)
=1-(-3)=4
- f(3/2)=1-2.(3/2)
=1-3
=-2
Vậy :f(-3/2)>f(3/2)
//////Hihi!
a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)
\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)
\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)
Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R
b: f(x)=0
=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)
=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)
=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)
cho tam giác ABC vuông ở A, đường cao Ah. Gọi E,F là hình chiếu của Hleen AB và AC
a0 tứ giác EAFH là hình gì?
b0 Qua A kẻ đường vuông góc với È cắt BC ở I.Chứng minh là trung điểm của BC
\(y=f\left(x\right)=4x^2-9\)
a, \(f\left(-2\right)=4.\left(-2\right)^2-9\)
\(=16-9\)
\(=7\)
\(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-9\)
\(=4.\dfrac{1}{4}-9\)
\(=1-9\)
\(=-8\)
b, \(f\left(x\right)=-1\Rightarrow4x^2-9=-1\)
\(\Leftrightarrow4x^2=8\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow\)\(x=\pm\sqrt[]{2}\)
c, Ta có \(f\left(x\right)=4x^2-9\)
\(f\left(-x\right)=4\left(x\right)^2-9\)
\(=4x^2-9\) \(=f\left(x\right)\)
Vậy \(f\left(x\right)=f\left(-x\right)\)
-Chúc bạn học tốt-
a) \(f\left(\frac{3}{2}\right)=2.\frac{3}{2}=3\)
b) \(f\left(a\right)+f\left(-a\right)=2a+\left(-2a\right)=0\left(đpcm\right)\)
f(-x)=2.(-x)^2+7=2x^2+7=f(x)