K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

17 tháng 7 2021

\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)

\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)

\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)

\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)

\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)

.... mấy ý còn lại bn tự lm nhé, tương tự thhooi

1) \(-\left(y+6\right)^2=-y^2-12y-36\)

2) \(-\left(4-y\right)^2=-y^2+8y-16\)

3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)

4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)

5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)

6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)

7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)

8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)

`#040911`

`a)`

\(\left(2x-1\right)^2-\left(2x+5\right)\left(2x+1\right)=10\)

\(\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10 \\ \Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10 \\ \Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10 \\ \Leftrightarrow -16x - 4 = 10 \Leftrightarrow -16x = 10 + 4 \\ \Leftrightarrow -16x = 14 \\ \Leftrightarrow x = \dfrac{-7}{8}\)

Vậy, `x = -7/8`

`b)`

`9^2(x - 1) + 25(1 - x) = 0`

`<=> 9^2(x - 1) - 25(x - 1) = 0`

`<=> (x - 1)(9^2 - 5^2) = 0`

`<=>`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\)

Vậy, `x = 1`

`c)`

`x^2+3x - 4 = 0`

`<=> x^2 + 4x - x - 4 = 0`

`<=> (x^2 - x) + (4x - 4) = 0`

`<=> x(x - 1) + 4(x - 1) = 0`

`<=> (x + 4)(x - 1) = 0`

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-4;1\right\}\)

a: =>4x^2-4x+1-(4x^2+2x+10x+5)=10

=>4x^2-4x+1-10-4x^2-12x-5=0

=>-16x-4=0

=>x=-1/4

b: =>(x-1)(9^2-25)=0

=>x-1=0

=>x=1

c: =>x^2+4x-x-4=0

=>(x+4)(x-1)=0

=>x=1 hoặc x=-4

`#040911`

`a)`

`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`

`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`

`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`

`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`

`\Leftrightarrow -16x - 4 = 10`

`\Leftrightarrow -16x = 10 + 4`

`\Leftrightarrow -16x = 14`

`\Leftrightarrow x = \dfrac{-7}{8}`

Vậy, `x= \dfrac{-7}{8}`

`b)`

`9^2(x - 1) + 25(1 - x) = 0`

`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`

`\Leftrightarrow (x - 1)(9^2 - 25) = 0`

`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)

`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)

`c)`

\(x^2+3x-4=0\)

`\Leftrightarrow x^2 + 4x - x - 4 = 0`

`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`

`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`

`\Leftrightarrow (x + 4)(x - 1) = 0`

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)

21 tháng 8 2019

1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)

Mà xyz = -108

\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)

\(\Leftrightarrow4k^3=-108\)

<=> k3 = -27

<=> k = -3

\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)

2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có: 

\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)

21 tháng 8 2019

3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)

    2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)

4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)

Mà xyz = 240

<=> 3k . 2/k . 4k = 240

<=> 24k = 240

<=> k = 10

 \(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)

21 tháng 9 2019

b) Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}.\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)\(x+y+z=92.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{15}=2\Rightarrow y=2.15=30\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(20;30;42\right).\)

c) Ta có: \(2x=3y=5z.\)

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)\(x+y-z=95.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}.\)

\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{95}{6}\Rightarrow x=\frac{95}{6}.3=\frac{95}{2}\\\frac{y}{5}=\frac{95}{6}\Rightarrow y=\frac{95}{6}.5=\frac{475}{6}\\\frac{z}{2}=\frac{95}{6}\Rightarrow z=\frac{95}{6}.2=\frac{95}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(\frac{95}{2};\frac{475}{6};\frac{95}{3}\right).\)

Chúc bạn học tốt!

6 tháng 12 2017

tính nhanh

15,5 x 49,8 + 31 x 24,6 + 15,5

4 tháng 12 2017

làm ơn giúp mình với mình cần gấp lắm, ai làm sớm nhất, hay nhất mình k cho

28 tháng 1 2020

|25 - 24 -10| - (28 - 30 + 4)
= |1 - 10| - (-2 + 4)
= |-9| - 2
= 9 - 2
= 7
-(-73) + (44 - 94 + 27) + 94
= 73 + (-50 + 27) + 94
= 73 + (-23) + 94
= 73 - 23 + 94
= 50 + 94
= 144
(-33 + 108 - 75) - (108 + 25)
= (75 - 75) - 133
= 0 - 133
= -133
120 - (-2 + 120 - 18) - 92
= 120 - (118 - 18) - 92
= 120 - 100 - 92
= 20 - 92
= -72