Ba đội thợ sơn, sơn ba dãy nhà có cùng diện tích phải sơn. Đội thứ nhất sơn xong trong 4 ngày, đội thứ hai sơn xong trong 6 ngày và đội thứ ba trong 5 ngày. Hỏi mỗi đội có bao nhiêu người thợ, biết rằng đội thứ hai có ít hơn đội thứ ba 4 người?( Năng suất các người thợ như nhau).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thợ của 3 đội là x;y;z
Ta có 4x = 6y = 5z
\(\Rightarrow\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}=\frac{z-y}{\frac{1}{5}-\frac{1}{6}}=\frac{4}{\frac{1}{30}}=120\)
=> x = 30 ; y = 20 ; z = 24
Gọi thời gian đội I làm một mình xong công việc là x (ngày) (x > 4)
Nếu họ làm riêng thì đội I hoàn thành công việc nhanh hơn đội II là 6 ngày
⇒ thời gian một mình đội II làm xong công việc là x + 6 (ngày).
Mỗi ngày, đội I làm được: (công việc); đội II làm được (công việc).
⇒ Một ngày cả hai đội cùng làm được: (công việc).
Cả hai đội cùng làm thì trong 4 ngày xong việc nên ta có phương trình:
⇔ 4.(2x + 6) = x(x + 6)
⇔ 8x + 24 = x2 + 6x
⇔ x2 – 2x – 24 = 0
Có a = 1; b = -2; c = -24 ⇒ Δ’ = (-1)2 – 1.(-24) = 25 > 0
Phương trình có hai nghiệm
Trong hai nghiệm chỉ có nghiệm x = 6 thỏa mãn điều kiện.
Vậy:
Một mình đội I làm trong 6 ngày thì xong việc.
Một mình đội II làm trong 12 ngày thì xong việc.
Gọi số máy 3 đội ll là a,b,c(máy;a,b,c∈N*)
Áp dụng tc dtsbn:
\(6a=8b=4c\Rightarrow\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{6}=\dfrac{c-a}{6-4}=\dfrac{2}{2}=1\\ \Rightarrow\left\{{}\begin{matrix}a=4\\b=3\\c=6\end{matrix}\right.\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{4}=\dfrac{c-a}{4-3}=3\)
Do đó: a=9; b=6; c=12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b-c}{6-5}=1\)
Do đó: a=10; b=6; c=5
30,20,24 ( đáp án đó,theo thứ tự từng đội )