K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)

\(\RightarrowĐPCM\)

9 tháng 12 2017

Mọi ng giúp em

14 tháng 12 2016

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...

20 tháng 8 2018

a) Ta có:

\(x^2+2xy+y^2+1\)

\(=\left(x+y\right)^2+1\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x+y\right)^2+1\ge1\)

\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x

b) Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

18 tháng 12 2017

Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)

\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)

\(A=3\left(x^2-2x+1\right)+1\)

\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

Viết lại đề câu a)

Câu b)

\(A=4x^2+4x+15\)

\(=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy : Min \(A=14\Leftrightarrow x=-\frac{1}{2}\)

3 tháng 4 2020

\(x^2-3x+7=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)

Ta có \(A=4x^2+4x+15=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(x=\frac{-1}{2}\)

Vậy Min \(A=14\Leftrightarrow x=\frac{-1}{2}\)

1 tháng 5 2017

Bạn viết thiếu đề bài nhé, phải là -x2 + x - 1 nhỏ hơn hoặc bằng 0 với mọi x!! ^ . ^

Ta có: 

         -x2 + x - 1 = - (x2 - x + 1)

                        = - (x - 1)2   (hằng đẳng thức đấy bạn)

Vì (x - 1)2 \(\ge\)0 với mọi x => - (x - 1)\(\le\)với mọi x.

 Dấu bằng xảy ra <=> x - 1 = 0 <=> x = 1.

_Kik nhé!! ^ ^

1 tháng 5 2017

Không phải chỉ có nhỏ hơn thôi

13 tháng 9 2014

Đối với bài này, đầu tiên lấy n = 1, 2 để biết gợi ý phân tích số thành nhân tử, rồi sau đó khái quát lên.

Với n = 1, số trở thành 121 = 11 x 11

Với n = 2, số trở thành 11211 = 111 x 101

Vậy khái quát hóa lên:

       11...1211...1 = 11..11 x 100...01 (số thứ nhất có n+1 chữ số 1, só thứ hai có số đầu tiên và cuối cùng là 1 và n-1 chữ số 0 ở giữa.

Để chứng minh trường hợp tổng quát trên cũng rất dễ, có thể đặt phép nhân theo hàng dọc là ra:

      11...11

   x 10...01

      11..   1

11..1

11...21....1

Hoặc cách khác là:

   11...11 x 10...01 = 11...11 x (10n +1) = 11...11 x 10n + 11...11

= 11...1100...0 + 11...11 = 11...1211...1

Bản chất hai cách nhân như nhau cả. 

4 tháng 11 2017

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

15 tháng 10 2017

- Nếu n là số chẵn thì n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.

- Nếu n là số lẻ thì n + 2017 là số chẵn => n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.

Vậy n.(n + 2017) là số chẵn với mọi số tự nhiên n.

15 tháng 10 2017

Xét 2 trường hợp:

Nếu n lẻ thì n + 2017 sẽ là một số chẵn

Mà lẻ nhân chẵn sẽ cho 1 số chẵn nên n.(n+2017) chẵn

Nếu n chẵn thì n + 2017 sẽ là một số lẻ

Mà chẵn nhân lẻ sẽ cho 2 số chẵn nên n.(n + 2017 ) chẵn

Vậy với mọi số tự nhiên n thì n.(n+2017) chẵn

Nhớ k cho mình nhé! Thank you!!!

18 tháng 12 2017

3x2 - 6x + 4

= 3( x2 - 2x + 1) + 1

= 3( x - 1)2 + 1

Do : 3( x - 1)2 lớn hơn hoặc bằng 0 với mọi x thuộc R

=> 3( x - 1)2 + 1 > 0 với mọi x thuộc R