cho a b c thuộc N thỏa mãn ab+ac+bc=1
Chứng minh (a2+1)(b2+1)(c2+1)là chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)
\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)
\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Có : a^2+1 = a^2+ab+bc+ca = (a^2+ab)+(bc+ca) = (a+b).(a+c)
Tương tự : b^2+1 = (b+c).(b+a)
c^2+1 = (c+a).(c+b)
=> (a^2+1).(b^2+1).(c^2+1) = [(a+b).(b+c).(c+a)]^2 là 1 số chính phương
=> ĐPCM
k mk nha