K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

20 tháng 11 2016

Làm nốt phần còn lại của bạn Thắng

(x + y - 5)2 + 2(y - 1)2 - 9 = 0

<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)

\(\Leftrightarrow\left(S-5\right)^2\le9\)

\(\Leftrightarrow-3\le S-5\le3\)

\(\Leftrightarrow2\le S\le8\)

Vậy GTNN là 2 đạt được khi x = y = 1

GTLN là 8 đạt được khi (x, y) = (7, 1)

20 tháng 11 2016

\(x^2+3y^2+2xy-10x-14y+18\)

\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)

\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)

....

9 tháng 7 2017

Ta có : 

\(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)

\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)

Vì \(2\left(y-1\right)^2\ge0\forall y\)nên  \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)

\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)

  • \(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
  • \(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
13 tháng 4 2016

thánh

14 tháng 4 2016

em mới học lớp 5 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)