K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

chtt còn ko thì tick mình giải cho

19 tháng 11 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét ΔBMD và ΔCME có:

BM = MC (vì M là trung điểm BC)

MD = ME (giả thiết)

∠BMD = ∠EMC (hai góc đối đỉnh)

⇒ ΔBMD = ΔCME (c.g.c)

⇒ ∠D = ∠MEC (hai góc t.ư)

Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.

Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE

10 tháng 8 2016

Bạn tự vẼ hình nha

Gọi N là giao điểm của CE và AB

Xét CME và BMD có

MB=MC(giả thiết )

MD=ME(giả thiết)

BMD=CME(2 góc đối đỉnh)

Do đó CME=BMD(c.g.c)

=>MBD=MCE => BD // CE

=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)

=>CNB=180-CNB=180-90=90

Vậy CE vuông góc với AB

a) Xét ΔBMD và ΔCME có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)

MD=ME(gt)

Do đó: ΔBMD=ΔCME(c-g-c)

b) Ta có: ΔBMD=ΔCME(cmt)

nên BD=CE(hai cạnh tương ứng)

c) Ta có: ΔBMD=ΔCME(cmt)

nên \(\widehat{BDM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BDM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên BD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BD//EC(cmt)

BD\(\perp\)AB(gt)

Do đó: EC\(\perp\)AB(Định lí 2 từ vuông góc tới song song)

20 tháng 2 2021

cảm ơn nhé bạn

 

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AB=AC

AM chung

Do đó: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

b: Ta có: ME=MB

\(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

Do đó: \(EM=\dfrac{1}{2}BC\)

Xét ΔEBC có

EM là đường trung tuyến

\(EM=\dfrac{1}{2}BC\)

Do đó: ΔEBC vuông tại E

=>BE\(\perp\)EC

 

 

1 tháng 12 2017

Bạn tự vẼ hình nha
Gọi N là giao điểm của CE và AB
Xét CME và BMD có
MB=MC(giả thiết )
MD=ME(giả thiết)
BMD=CME(2 góc đối đỉnh)
Do đó CME=BMD(c.g.c)
=>MBD=MCE => BD // CE
=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)
=>CNB=180-CNB=180-90=90
Vậy CE vuông góc với AB

1 tháng 12 2017

xét tam giác EMC và tam giác DMB

có góc EMC=góc DMB

     ME=MD(GT)

     MB=MC (GT)

=>tam giác EMC=Tam giác DMB(c.g.c)

=>goc CEM= goc DBM (2goc tuong ung)

ma go CEM va Goc DBM la 2 goc  SLT

=>AC song song BD

và Góc ABD=90 do (GT)

=> góc AHC =90 do ( 2goc đồng vị ) 

vậy CE vuông góc với AB tại H