K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

có AB=AC suy ra tam giác ABC cân

mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC

xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)

suy ra 2 tam giác bằng nhau

a: Xét ΔABE và ΔACE có

AB=AC
\(\widehat{BAE}=\widehat{CAE}\)

AE chung

Do đó: ΔABE=ΔACE

b: ta có: ΔABC cân tại A

mà AE là tia phân giác của góc BAC

nên AE là đường trung trực của BC

29 tháng 11 2021

Xét tg ABE và tg ACE có: 

AB = AC (gt).

Góc BAE = Góc CAE (AE là phân giác của góc BAC).

AE chung.

=> tg ABE = tg ACE (c - g - c).

b) Xét tg ABC có: AB = AC (gt)

Tg ABC cân tại A.

Xét tg ABC cân tại A có:

AE là phân giác của góc BAC (gt).

=> AE đường trung trực của đoạn thẳng BC (tính chất các đường trong tg cân).

 

29 tháng 11 2021

Có hình không bạn 

 

8 tháng 5 2020

a) Xét ΔABE ΔACE ta có:

AE chung

AB=AC

EABˆ=EACˆ(AE là đường phân giác của góc BAC)

Do đó ΔABE=ΔACE(c-g-c)

Vậy ​BEAˆ=CEAˆ​(hai góc tương ứng)

AB=AC(hai cạnh tương ứng)

b) Do đó ΔABCcân ,mà có AE là đường phân giác nên AE cũng là đường trung trực của ΔABC

=> AE là đường trung trực của BC

8 tháng 5 2020

a) Xét 2 ΔABE và ΔACE có:

AB=AC (giả thiết) (1)

EB=EC (vì E là trung điểm của BC) (2)

AE là đường thẳng chung (3)

⇒ΔABE=ΔACE (cạnh - cạnh - cạnh) (4)

b) Từ (1),(2),(3) và (4) suy ra:

Góc AEB = góc AEC (2 góc tương ứng)

⇒AE là đường trung trực của BC

5 tháng 2 2021

a/ Xét tam giác ABC có:  AB = AC (gt) => Tam giác ABC cân tại A

Xét tam giác ABE và tam giác ACE:

^B = ^C (tam giác ABC cân tại A)

^BAE = ^CAE (AE là tia phân giác của góc BAC)

 AB = AC (tam giác ABC cân tại A)

=> Tam giác ABE = Tam giác ACE (g c g)

b/ Xét tam giác ABC cân tại A:  AE là tia phân giác của góc BAC (gt)

=> AE là đường trung trực của đoạn thẳng BC (TC các đường trong tam giác cân)

21 tháng 12 2019

a) Xét ΔABE và ΔADE có:

AE: chung

BAE=DAE(AE: pg BAC) 

AB=AD(gt) 

=>ΔABE=ΔADE(c.g.c) 

=>đpcm

b) Từ cm(a) 

=>EB=ED(2 cạnh tương ứng) (*)

=>AEB=AED

Mà AEB+AED=180o

=>2AEB=180o

=>AEB=90o

=>AE\(\perp\) BD (**)

Từ (*) và (**)

=>AE là trung trực BD(đpcm)