Ta có $P=\dfrac{x^2}{y-1}+ \frac{y^2}{x-1}$.
Áp dụng BĐT AM-GM ta có $1 \cdot (y-1) \le \frac{y^2}{4} \Rightarrow \frac{x^2}{y-1} \ge \frac{4x^2}{y^2}$.
Tương tự thì $\frac{y^2}{x-1} \ge \frac{4y^2}{x^2}$. Vậy $P \ge \dfrac{4x^2}{y^2}+ \frac{4y^2}{x^2} \ge 8$ theo BĐT AM-GM.
Dấu đẳng thức xảy ra khi và chỉ khi $x=y=2$. $\blacksquare$