K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Đáp án: D

Theo định lý Vi-ét ta có

Khi đó,   là nghiệm của phương trình

28 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1

NV
22 tháng 1 2022

\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)

Ta có:

\(x_1^2+x_1x_2=2x_2-12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)

\(\Leftrightarrow2x_1=4-2x_1-12\)

\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)

Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)

\(\Rightarrow m=-5\)

23 tháng 2 2022

a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)

24 tháng 12 2017

Giả sử  x 1 x 2  la hai nghiệm của phương trình  x 2 + px + q = 0

Theo hệ thức Vi-ét ta có:  x 1 +  x 2  = - p/1 = - p;  x 1 x 2  = q/1 = q

Phương trình có hai nghiệm là  x 1  +  x 2  và  x 1 x 2  tức là phương trình có hai nghiệm là –p và q.

Hai số -p và q là nghiệm của phương trình.

(x + p)(x - q) = 0 ⇔  x 2  - qx + px - pq = 0 ⇔  x 2  + (p - q)x - pq = 0

Phương trình cần tìm:  x 2  + (p - q)x - pq = 0

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

NV
5 tháng 4 2022

\(\Delta=1-4\left(m+1\right)>0\Rightarrow m< -\dfrac{3}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_1x_2+3x_2=7\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)+3x_2=7\)

\(\Leftrightarrow x_1+3x_2=7\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=3\end{matrix}\right.\)

Thế vào \(x_1x_2=m+1\)

\(\Rightarrow m+1=-6\Rightarrow m=-7\)

21 tháng 12 2019

Đáp án: B