Một thau nhôm khối lượng 0,2kg đựng 3kg nước ở 30°C. Thả vào thau nước một thỏi đồng có khối lượng 200g lấy ra ở lò. Nước nóng đến 32°C. Tìm nhiệt độ của bếp lò. Biết nhiệt dung riêng của nước, nhôm, đồng lần lượt là 4200 J/kg.K, 880J/kg.K, 380J/kg.K . Trong quá trình này, nhiệt toả ra môi trường là 10% nhiệt lượng cung cấp cho thau nước. Tính nhiệt độ thực sự của bếp lò? (mn giúp mình vs ạ, cho mk cảm ơn trc nha!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
Nhôm: m1 = 0,5kg
c1 = 880J/kg.K
Nước: m2 = 2kg
c2 = 4200J/kg.K
Đồng: m3 = 200g = 0,2kg
c3 = 380J/kg.K
t1 = 200C
t2 = 21,20C
t = ?
Giải:
Nhiệt độ của bếp lò = nhiệt độ ban dầu của thỏi đồng = t0C
Nhiệt lượng thau nhôm thu vào là:
Q1 = m1.c1.(t2 - t1)
Nhiệt lượng nước thu vào là:
Q2 = m2.c2.(t2 - t1)
Nhiệt lượng đồng tỏa ra là:
Q3 = m3.c3.(t - t2)
Theo PTCBN:
Q1 + Q2 = Q3
<=> m1.c1(t2 - t1) + m2.c2.(t2 - t1) = m3.c3.(t - t2)
<=> (t2 - t1).(m1.c1 + m2.c2) = m3.c3.(t - t2)
<=> (21,2 - 20).(0,5.880 + 2.4200) = 0,2.380.(t - 21,2)
<=> 10608 = 76.(t - 21,2)
<=> 139,58 = t - 21,2
<=> t = 160,780C
Nêu tiếp tục thả vào chậu nước một thỏi đá có khối lượng 100g ở 00C; Nước đá tan hết không? Tìm nhiệt độ cuối cùng của hệ thống hoặc lượng nước đá còn sót lại nếu không tan hết? Biết nhiệt lượng nóng chảy của nước đá \(\curlywedge\)=3,14.105 j/kg. Bỏ qua sự mất nhiệt ra ngoài môi trường
Giúp mk vs, mk đg cần gấp!!! Cảm ơn trước
Nhiệt lượng thu vào của nước là
\(Q_{thu}=m_1c_1\Delta t=0,5.4200\left(22-20\right)=4200\left(J\right)\)
Ta có pt cân bằng nhiệt
\(Q_{thu}=Q_{tỏa}\\ \Leftrightarrow4200=m_2c_2\left(t_2-t_1\right)\\ \Leftrightarrow0,1.380\left(t-22\right)=4200\\ \Rightarrow t\approx132^o\)
nhiệt độ của bếp lo=nhiệt độ của thỏi đồng
=>(0,5.880+2.4200).5=0.2.380.(t-25)
=>giải ra ta dc nhiệt độ thỏi đồng là 606.58 độ
b,ta có Q+10%Q=Qthuc
44200+10%.44200=48620J
thay vào phương trình:48620=0,2.380(t-25)
giải phương trình và ta được t~664,74 độ
Tóm tắt:
\(m_1=500g=0,5kg\)
\(t_1=150^oC\)
\(t=50^oC\)
\(V=1l\Rightarrow m_2=1kg\)
\(t_2=20^oC\)
\(\Rightarrow\Delta t_1=t_1-t=150-50=100^oC\)
\(\Rightarrow\Delta t_2=t-t_2=50-20=30^oC\)
\(c_1=880J/kg.K\)
\(c_2=4200J/kg.K\)
==============
a) \(t=?^oC\)
b) \(m_2=?kg\)
c) \(t_{cb_2}=?^oC\)
a) Nhiệt độ của thỏi nhôm sau khi được cân bằng là \(t=50^oC\)
b) Khối lượng nước có trong cốc là \(m_2=1kg\)
c) Do nhiệt lượng của nước sôi tỏa ra bằng nhiệt lượng mà nước thu vào nên ta có phương trình cân bằng nhiệt:
\(Q_2=Q_3\)
\(\Leftrightarrow m_2.c_2.\Delta t_2=m_3.c_2.\Delta t_3\)
\(\Leftrightarrow1.4200.\left(t_{cb_2}-50\right)=0,35.4200.\left(100-t_{cb_2}\right)\)
\(\Leftrightarrow4200t_{cb_2}-210000=147000-1470t_{cb_2}\)
\(\Leftrightarrow4200t_{cb_2}+1470t_{cb_2}=147000+210000\)
\(\Leftrightarrow5670t_{cb_2}=357000\)
\(\Leftrightarrow t_{cb_2}=\dfrac{357000}{5670}\approx63^oC\)
a) Nhiệt độ của bếp lò: ( t0C cũng là nhiệt độ ban đầu của thỏi đồng)
Nhiệt lượng của thau nhôm nhận được để tăng nhiệt độ từ t1= 200C lên t2 = 21,20C:
Q1 = m1.c1(t2 - t1)
Nhiệt lượng của nước nhận được để tăng nhiệt độ từ t1= 200C lên t2 = 21,20C:
Q2 = m2.c2(t2 - t1)
Nhiệt lượng của thỏi đồng toả ra để hạ nhiệt độ từ t0C xuống t2 = 21,20C:
Q3 = m3.c3(t – t2)
Vì không có sự toả nhiệt ra môi trường nên theo phương trình cân bằng nhiệt ta có:
Q3 = Q1 + Q2 => m3.c3(t - t2) = m1.c1(t2 - t1) + m2.c2(t2 - t1)
=> t = [(m1.c1+ m2.c2) (t2 - t1) / m3.c3] + t2
thế số ta tính được t = 160,780C
b) Nhiệt độ thực của bếp lò(t’):
Theo giả thiết ta có: Q’3 - 10% ( Q1+ Q2 ) = ( Q1+ Q2 )
ð Q’3 = 1,1 ( Q1+ Q2 )
ð m3.c3(t’ - t2) = 1,1 (m1.c1+ m2.c2) (t2 - t1)
ð t’ = [ 1,1 (m1.c1+ m2.c2) (t2 - t1) ] / m3.c3 }+ t2
Thay số ta tính được t’ = 174,740C
c) Nhiệt độ cuối cùng của hệ thống:
+ Nhiệt lượng thỏi nước đá thu vào để nóng chảy hồn tồn ở 00C:
Q = 3,4.105.0,1 = 34000(J)
+ Nhiệt lượng cả hệ thống (thau, nước, thỏi đồng) toả ra khi hạ 21,20C xuống 00C:
Q’ = (m1.c1+ m2.c2 + m3.c3 ) (21,20C - 00C) = 189019,2(J) + So sánh ta có: Q’ > Q nên nhiệt lượng toả ra Q’ một phần làm cho thỏi nước đá tan hồn
tồn ở 00 C và phần còn lại (Q’-Q) làm cho cả hệ thống ( bao gồm cả nước đá đã tan) tăng nhiệt độ từ 00C lên nhiệt độ t”0C.
+ (Q’-Q) = [m1.c1+ (m2 + m)c2 + m3.c3 ] (t”- 0)
=> t” = (Q’-Q) / [m1.c1+ (m2 + m)c2 + m3.c3 ]
thay số và tính được t” = 16,60C.
TK: trích từ "https://hoidapvietjack.com/q/10719/mot-thau-nhom-khoi-luong-02kg-dung-3kg-nuoc-o-300c-tha-vao"
- Gọi t°C là nhiệt độ củ bếp lò, cũng là nhiệt độ ban đầu của thỏi đồng
- Nhiệt lượng thau nhôm nhận được để tăng từ t1 = 30°C đến t2 = 32°Ct1 = 30°C đến t2 = 32°C
Q1 = m1.c1.(t2 − t1)Q1 = m1.c1.(t2 - t1)= 0,2.880.2 = 352 (J)
- Nhiệt lượng nước nhận được để tăng từ t1 = 30°C đến t2 = 32°Ct1 = 30°C đến t2 = 32°C
Q2 = m2.c2.(t2 − t1)Q2 = m2.c2.(t2 - t1) = 3.4200.2 = 25200 (J)
- Nhiệt lượng đồng toả ra để hạ từ t°C đến t2t2 = 32°C
Q3 = m3.c3.(t − t2)Q3 = m3.c3.(t - t2) ( khối lượng thỏi đồng)
- Do có sự toả nhiệt ra môi trường nên phương trình cân bằng nhiệt là:
- Nhiệt độ của thỏi đồng là:
Đáp số: 401,8°C
Thank <3