K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

AI cắt ED tại J', ta cm J' ≡ J 


Từ tính chất tgiác đồng dạng ta có: 

EJ'/BI = AE/AB = ED/BC = ED/2BI 


=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 


Vậy A,I,J thẳng hàng 

*OI cắt ED tại J" ta cm J" ≡ J 


Hiển nhiên ta có: 


OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 


Mặt khác: 


^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 


=> tgiác J"DO đồng dạng với tgiác IBO 

=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 

=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 

Tóm lại A,I,O,J thẳng hàng 

29 tháng 6 2019

#)Mình vẽ hình cho nhé :

A B C D E I J O

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

18 tháng 11 2017

a: Xét ΔAEB và ΔAFC có 

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: Xét ΔFBI và ΔECI có 

\(\widehat{FBI}=\widehat{ECI}\)

FB=EC

\(\widehat{BFI}=\widehat{CEI}\)

Do đó: ΔFBI=ΔECI

Suy ra: IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI\(\perp\)BC

d: Xét ΔBIC có IB=IC

nên ΔBIC cân tại I

22 tháng 6 2020

JUNPHAM2018 đúng rồi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!