VỚI MỌI \(x,y\)CMR \(^{x^2+y^2\ge2xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=x2-x+1/4+y2+4y+4+3/4
=(x-1/2)2+(y+2)2+3/4>=3/4>0 với mọi x
=>dpcm
Ta có : x2 - 6xy + 11
= x2 - 6xy + 9 + 2
= (x - 3)2 + 2
Mà ; (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 2 \(\ge2\forall x\)
Vậy x2 - 6xy + 11 \(>0\forall x\)
Ta có \(x^2-6xy+11\)
=\(x^2-6xy+9+1\)
=\(\left(x-3\right)^2+2\)
Mà\(\left(x-3\right)^2\ge0\forall x\)
Nên \(\left(x-3\right)^2+2\ge2\forall x\)
Vậy \(x^2-6xy+11>0\forall x\)
a, Ta có : ( x - y )^2>=0 => x^2-2xy+y^2 >= 0
<=> x^2+y^2>= 2xy ( đpcm)
b, Ta có: thay 1 = x +y +z
=> x^2+y^2+z^2 >= (x +y+z)/3
<=>x^2+y^2+z^2 + 1/3 >= (x+y+z)/3 + (1/3)
<=> x^2+1/9 +y^2+1/9+z^2+1/9 >= 2/3 ( * )
Áp dụng BĐT cô si có
x^2 + 1/9 >= 2.căn ( x^2/9)=2.x/3
y^2 +1/9 >= 2. căn ( y^2/9)=2y/3
z^2 +1/9>= 2. căn (z^2/9) = 2z/3
Cộng 3 cái lại
=> x^2 +1/9 +y^2 +1/9 +z^2 +1/9 >=2.( x+y+z)/3=2/3 => (*) đúng => đpcm.
K mk nhé
hok tốt
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
a: =x^2-6x+10
=x^2-6x+9+1
=(x-3)^2+1>0
b: =x^2-2x+1+9y^2-6y+1+1
=(x-1)^2+(3y-1)^2+1>0
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Xét hiệu :
H = x2 + y2 - 2xy = ( x - y )2 \(\ge\)0 \(\forall\)x,y
Dấu " = " xảy ra khi : x - y = 0 hay x = y
\(\Rightarrow\)x2 + y2 \(\ge\)2xy
Vậy x2 + y2 \(\ge\)2xy
Có : (x-y)^2 >= 0 với mọi x,y
<=> x^2-2xy+y^2 >= 0
Cộng 2 vế với 2xy ta được :
x^2+y^2 >= 2xy
=> ĐPCM
k mk nha