K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Áp dụng bđt AM - GM ta có :

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\)

Cộng vế với vế ta được :

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)(đpcm)

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

2 tháng 7 2019

#)Giải :

Ta có : 

\(\hept{\begin{cases}\frac{ab}{b+c+a+b}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\\\frac{bc}{a+b+a+c}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{ac}{b+c+a+b}\le\frac{ac}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{a+b}.\left(\frac{bc}{4}+\frac{ac}{4}\right)+\frac{1}{a+c}.\left(\frac{bc}{4}+\frac{ab}{4}\right)+\frac{1}{b+c}.\left(\frac{ac}{4}+\frac{ab}{4}\right)\)

\(=\frac{1}{a+b}.\frac{c\left(a+b\right)}{4}+\frac{1}{a+c}.\frac{b\left(a+c\right)}{4}+\frac{1}{b+c}.\frac{a\left(b+c\right)}{4}\)

\(=\frac{c}{4}+\frac{b}{4}+\frac{a}{4}\)

\(\Rightarrow\frac{a+b+c}{4}\)

\(\Rightarrowđpcm\)

6 tháng 4 2021

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

6 tháng 4 2021

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

21 tháng 7 2018

Ta có: \(a^2+b^2\ge2ab\)

\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)

Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)

Suy ra sai đề :)

19 tháng 5 2017

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)

Làm tương tự ta được

\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh. 

22 tháng 3 2017

Let \(D=\left(a+b\right)\left(b+c\right)\left(c+a\right)\). Clearly \(D>0\). We show that the difference between the left-hand side and the right-hand of the inequality is non-negative 

\(\frac{a^2+bc}{b+c}-a+\frac{b^2+ca}{c+a}-b+\frac{c^2+ab}{a+b}-c\)

\(=\frac{a^2+bc-ab-ac}{b+c}+\frac{b^2+ac-ab-bc}{a+c}+\frac{c^2+ab-ac-bc}{a+b}\)

\(=\frac{\left(a-b\right)\left(a-c\right)}{b+c}+\frac{\left(b-a\right)\left(b-c\right)}{a+c}+\frac{\left(c-a\right)\left(c-b\right)}{a+b}\)

\(=\frac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{D}\)

\(=\frac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{D}\)

\(=\frac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2D}\ge0\)

Equality holds if and only if \(a=b=c\)

Done !

22 tháng 3 2017

Mỗi lần thấy bất đẳng thức kiểu này là mình mù đường không biết nên đi hướng nào luôn. Mình triển khai theo Cauchy nó ra loạn xạ luôn. hihi

NV
6 tháng 6 2020

\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(a=b=c\)

31 tháng 12 2017

ta có 

A=\(\frac{a^4}{ab^2+abc+c^2a}+\frac{b^4}{bc^2+abc+ba^2}+\frac{c^4}{ca^2+abc+cb^2}\)

>=\(\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+a^2b+bc^2+cb^2+ca^2+ac^2+3abc}\) =\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\) (Đấy  là bđt svacxơ nhé )

ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\sqrt{\frac{a^2+b^2+c^2}{3}}\Leftrightarrow\frac{\sqrt{a^2+b^2+c^2}\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\frac{1}{\sqrt{3}}\)

   điều này luôn đúng vì dễ dàng chứng minh \(a^2+b^2+c^2\ge ab+bc+ca;\)

                                               và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}\)

đến đây bạn nhân vào sẽ ra ĐPCM

dáu = xảy ra <=> a=b=c>0