cmr số chính phương lớn hơn 100 có chữ số tận cùng là số 5 thì chữ số hàng trăm là số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
sô Z chính Phường Tận cùng là 21 =>A=\(\sqrt{Z}\) có dạng a9 hoặc a1
TH1:A có dạng (a9)=>A^2=10a+9=100a^2+180.a+81=100a^2+100a+80a+81
để chữ số hàng chục =2=> 8.a+8=10t+2=> 8a=10t-6
\(a=\frac{10t-6}{8}\Rightarrow a=5n+3\)
\(0\le a\le9\Rightarrow0\le n\le1\) \(\Rightarrow t=\left\{0,1\right\}\Rightarrow a=\left(3,8\right)\)
a9=39 hoạc 89 có 39*39=1521 và 89*89=7921 hàng trăm lẻ =>Hàng trăm của A lẻ
TH2. A có dạng a1=>A^2=10a+1=100a^2+20.a+1 => 2a=10t+2=> a=1
11^2=121 hàng trăm cũng lẻ => hàng trăm của A lẻ
KL: lẻ
Cách làm có vẻ chưa đươc tối ưu lăm nhưng. có gì nghiên cuu tiếp
Gọi số đó là a
Ta có:
( 10a + 5 )2 = ( 10a )2 + 2 ( 10a . 5 ) + 52
Từ lời giải của bạn Khôi thì:
a ( a + 1 ) là hai số liên tiếp
=> ĐPCM
P/s tham khảo nha
Giải :
Xét :
\(\left(10a+5\right)^2=100a\left(a+1\right)+25\)
Vì \(a\left(a+1\right)\)chẵn
\(\Rightarrow\) Ta có \(ĐPCM\)