Từ bốn thẻ : 3 ; 4 ; , ;0. Hãy lập các số thập phân bé hơn 1.
Các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể lập được 6 số có 4 chữ số là: 2004; 2040; 2400; 4002; 4020; 4200
Chọn B.
a) So sánh các số ta có:
235 < 253 < 325 < 352.
Vậy trong bốn số đó, số lớn nhất là 352, số bé nhất là 235.
b) Từ ba tấm thẻ ghi các số 2, 3 và 5, ta lập được tất cả các số có ba chữ số như sau:
235 ; 253 ; 325 ; 352 ; 523; 532.
Mà: 235 < 253 < 325 < 352 < 523 < 532.
Vậy: Em có thể tạo được một số lớn hơn bốn số đó. Số lớn hơn bốn số đó là 523, 532.
a) Lần đầu tiên lấy thẻ, sau đó để lại vào hộp nên lần thứ 2 cũng sẽ có 3 trường hợp với 3 số xảy ra, nên ta có không gian mẫu của phép thử là:
\(\Omega = \left\{ {\left( {i;j} \right)\left| {i,j = 1,2,3} \right.} \right\}\) với i, j lần lượt là số được đánh trên thẻ được lấy lần đầu và lần hai
b) Lần đầu lấy một thẻ từ hộp, xem số, bỏ ra ngoài rồi lấy tiếp 1 thẻ khác từ hộp, nên lần hai chỉ có 2 trường hợp với hai số còn lại, nên ta có không gian mẫu của phép thử là:
\(\Omega = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)
(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)
c) Ta lấy đồng thời hai thẻ nên các số được đánh trên thẻ là khác nhau
\(\Omega = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)
(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)
Có 4 cách chọn thẻ thứ nhất. có 3 cách chọn thẻ thứ hai số cách chọn 2 tấm thẻ khác nhau từ 4 tấm thẻ là:
4 x 3 = 12 (cách)
Theo cách tính trên mỗi cách đã được tính hai lần. Vậy số cách lấy được 2 tấm thẻ từ bốn tấm thẻ đã cho là:
12 : 2 = 6 (cách)
Có 2 cách chọn tấm thẻ thứ nhất, có 3 cách chọn thẻ thứ hai. Vậy số cách chọn hai tấm thẻ để tích các số trên hai thẻ rút ra là số chẵn" là:
2 x 3 = 6 (cách)
Theo cách tính trên mỗi cách đã được tính hai lần.
Vậy số cách để rút hai tấm thẻ mà tích các số trên hai thẻ là số chẵn là:
6 : 2 = 3 (cách)
Xác suất của biến cố "tích các số trên hai thẻ rút ra là số chẵn" là:
3 : 6 = \(\dfrac{1}{2}\)
Kết luận:...
Cách thứ hai: Số cách chọn 2 thẻ bất kì (có kể thứ tự) là \(4.3=12\) cách. Như vậy, số cách chọn 2 thẻ không tính thứ tự là \(\dfrac{12}{2}=6\) cách.
Ta xét biến cố A: "Tích 2 số trên 2 thẻ rút ra là số chẵn." Biến cố đối của nó là \(\overline{A}\): "Tích 2 số trên 2 thẻ rút ra là số lẻ." Biến cố này tương đương với biến cố: "Cả 2 số trên 2 thẻ rút được là số lẻ."
Ta thấy trường hợp duy nhất thỏa mãn là rút được 2 tấm thẻ số 5 và 7. \(\Rightarrow P\left(\overline{A}\right)=\dfrac{1}{6}\) \(\Rightarrow P\left(A\right)=\dfrac{5}{6}\)
Vậy xác suất của biến cố: "Tích các số trên 2 thẻ rút ra là số chẵn." là \(\dfrac{5}{6}\).
Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".
\(\left|\Omega\right|=C^2_{17}\)
TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.
TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^2_5\) cách lấy.
\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)
\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)
Bốn thẻ sao chỉ có 3 số vậy em?
Tại có ô phẩy nx á cô