Tính tổng các hệ số của các hạng tử trong khai triển:
a, (5x - 3)6
b, (3x - 4)20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay x = 1 ta có
a, ( 5.1 - 3)^2 = 2^ 2 = 4
VẬy tổng các hệ số là 4
b thay x = 1 ; y = 1 ta có:
( 3.1 - 4.1 )^20 = (-1)^20 = 1
(*) Tổng quát muố tính tổng các hệ số sau khi khai chuyển ta chỉ việc thay 1 vào
mk ko nghĩ như vậy khi khai triển theo pascal kết quả hoàn toàn khác
1,tìm 1 số cho biết bình phương của nó =4 lần lập phương số ấy
tổng các hệ số là giá trị của f(x) khi x=1. VD: f(x)=2x^2+3x-1 suy ra tổng các hệ số là f(1)=2.1^2+3*1-1=4
tương tự bài kia ta có tổng các hệ số là 1
Tổng hệ số của tất cả hạng tử trong đa thức chính bằng kết quả của đa thức khi x=1
\(\left(5x-3\right)6\)
Thay x=1
\(\left(5.1-3\right)6=12\)
Tổng hệ số của khai triển trên là 12
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
`a,`
`A=2x^6+(-5x^3)+(-3x^6)+x^3+(-3/5x^2)+(-1/2x^2)+8+(-3x)`
`A=2x^6-5x^3-3x^6+x^3-3/5x^2-1/2x^2+8-3x`
`A=(2x^6-3x^6)+(-5x^3+x^3)+(-3/5x^2-1/2x^2)-3x+8`
`A=-x^6-4x^3-1,1x^2-3x+8`
`b,`
Hệ số cao nhất của đa thức: `-1`
Hệ số tự do: `8`
Hệ số của `x^2: -1,1 (-11/10)`
a: A=2x^6-3x^6-5x^3+x^3-3/5x^2-1/2x^2-3x+8
=-x^6-4x^3-11/10x^2-3x+8
b: Hệ số cao nhất là -1
Hệ số tự do là 8
Hệ số của x^2 là -11/10
Thay x= 1 ta có :
a, ( 5.1 - 3)^6 = 2^6 = 64
Vậy tổng các hệ số là 64
b, thay x = 1 ta cso:
(3.1 - 4)^20 = (-1)^20 = 1
Vậy tổng các hệ số là 1
BẠn chỉ cần thay 1 là biết tổng hệ số
a/ Tổng hệ số khi khai triển = \(\left(5-3\right)^6=2^6=64\)
b/ Tổng hệ số khi khai triển = \(\left(3-4\right)^{20}=\left(-1\right)^{20}=1\)