Giai pt nghiệm nguyên dương : x^3-y^3-z^3=3xyz và x^2=2.(y+z)
Làm đúng mk sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề là \(x^3+y^3+z^3-3xyz=11\) thì ta giải như sau:
Hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Áp dụng:
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=11\)
Dễ thấy:\(x+y+z\ge3\Rightarrow x+y+z=11\) và \(x^2+y^2+z^2-xy-yz-zx=1\)
Đến đây dễ rồi nha
Còn nếu đúng đề thì ta giải đơn giản như sau:
Dễ nhận ra trong 3 số x,y,z thì có ít nhất 1 số lớn hơn 1. Như vậy thì:
\(11=x^3+y^3+z^3+3xyz\ge x^3+y^3+z^3+6\Rightarrow x^3+y^3+z^3\le5\Rightarrow x^3< 5\Rightarrow x=1\)
Bạn tự làm tiếp nha
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Đây là bài gần giống nhé