Tìm x biết : x(x-2017)-2018x+2017.2018 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)
\(A=x-2019=2017-2019=-2\)
b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)
\(B=-2+\left(-40\right)+4=-38\)
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
Đề:............
<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0
<=> (1 - 2018x).[(-1) + 2019x] = 0
Xét 2 trường hợp, ta có:
TH1: 1 - 2018x = 0 TH2: -1 + 2019x = 0
<=> 2018x = 1 <=> 2019x = 1
<=> x = 1/2018 <=> x = 1/2019
Vậy x = 1/2018; 1/2019
\(2018x-1+2019x\left(1-2018x\right)=0\)
\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)
\(\left(1-2018x\right)\left(-1+2019x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)
F(x)=\(x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x+1.\)
x=2017=>2018=x+1 thay vào F(x) ta có:
F(x)=x+1=2018
Lời giải:
Ta có:
\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\)
\(A=(x^5-2017x^4)-(x^4-2017x^3)+(x^3-2017x^2)-(x^2-2017x)+x-1000\)
\(A=x^4(x-2017)-x^3(x-2017)+x^2(x-2017)-x(x-2017)+x-1000\)
Tại \(x=2017\Rightarrow A=2017^4.0-2017^3.0+2017^2.0-2017.0+2017-1000\)
\(A=2017-1000=1017\)
x = 2017 nha
Ta có : x(x-2017)-2018x+2017.2018=0
=>x(x-2017)-2018(x-2017)=0
=>(x-2017)(x-2018)=0
=>x=2017;2018.